【題目】已知a∈R,函數f(x)=x2﹣2ax+5.
(1)若a>1,且函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ ,
]恒成立,求實數a的取值范圍.
【答案】
(1)解:∵f(x)的圖象開口向上,對稱軸為x=a>1,
∴f(x)在[1,a]上單調遞減,
∴f(1)=a,即6﹣2a=a,解得a=2.
(2)解:不等式x|f(x)﹣x2|≤1對x∈[ ,
]恒成立,
即x|2ax﹣5|≤1對x∈[ ,
]恒成立,
故a≥ 且a≤
在x∈[
,
]恒成立,
令g(x)= ,x∈[
,
],則g′(x)=﹣
,
令g′(x)>0,解得: ≤x<
,令g′(x)<0,解得:
<x≤
,
故g(x)在[ ,
)遞增,在(
,
]遞減,
故g(x)max=g( )=
,
令h(x)= ,x∈[
,
],h′(x)=
<0,
故h(x)在x∈[ ,
]遞減,
h(x)min=h( )=7,
綜上: ≤a≤7.
【解析】(1)判斷出f(x)的單調性,利用單調性列方程解出;(2)問題轉化為a≥ 且a≤
在x∈[
,
]恒成立,根據函數的單調性求出a的范圍即可.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知t為實數,函數f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數y=g(ax+1)﹣kx是偶函數,求實數k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設t=4,當x∈[m,n]時,函數y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:點M(1,3)不在圓(x+m)2+(y﹣m)2=16的內部,命題q:“曲線 表示焦點在x軸上的橢圓”,命題s:“曲線
表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)的圖象關于點(﹣ ,0)成中心對稱,且對任意的實數x都有
,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com