精英家教網 > 高中數學 > 題目詳情

【題目】已知a∈R,函數f(x)=x2﹣2ax+5.
(1)若a>1,且函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ , ]恒成立,求實數a的取值范圍.

【答案】
(1)解:∵f(x)的圖象開口向上,對稱軸為x=a>1,

∴f(x)在[1,a]上單調遞減,

∴f(1)=a,即6﹣2a=a,解得a=2.


(2)解:不等式x|f(x)﹣x2|≤1對x∈[ , ]恒成立,

即x|2ax﹣5|≤1對x∈[ , ]恒成立,

故a≥ 且a≤ 在x∈[ , ]恒成立,

令g(x)= ,x∈[ ],則g′(x)=﹣

令g′(x)>0,解得: ≤x< ,令g′(x)<0,解得: <x≤ ,

故g(x)在[ , )遞增,在( , ]遞減,

故g(x)max=g( )= ,

令h(x)= ,x∈[ , ],h′(x)= <0,

故h(x)在x∈[ , ]遞減,

h(x)min=h( )=7,

綜上: ≤a≤7.


【解析】(1)判斷出f(x)的單調性,利用單調性列方程解出;(2)問題轉化為a≥ 且a≤ 在x∈[ , ]恒成立,根據函數的單調性求出a的范圍即可.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將函數y=sin(2x﹣ )的圖象先向左平移 個單位,再將圖象上各點的橫坐標變為原來的 倍(縱坐標不變),那么所得圖象的解析式為y=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知t為實數,函數f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數y=g(ax+1)﹣kx是偶函數,求實數k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設t=4,當x∈[m,n]時,函數y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:點M(1,3)不在圓(x+m)2+(y﹣m)2=16的內部,命題q:“曲線 表示焦點在x軸上的橢圓”,命題s:“曲線 表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x)的圖象關于點(﹣ ,0)成中心對稱,且對任意的實數x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的長方體中,AB=2 ,AD= = ,E、F分別為 的中點,則異面直線DE、BF所成角的大小為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知﹣1,a1 , a2 , 8成等差數列,﹣1,b1 , b2 , b3 , ﹣4成等比數列,那么 的值為( )
A.﹣5
B.5
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點A(0,1)為直角頂點,作橢圓內接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视