【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點A(0,1)為直角頂點,作橢圓內接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.
【答案】解:設三角形另外兩頂點為B,C,不妨設lAB:y=kx+1(k>0),lAC:y=﹣ x+1.
由 ,得(1+a2k2)x2+2ka2x=0,
∴|AB|= =
.
同理可得:|AC|= .
由|AB|=|AC|得,k3﹣a2k2+a2k﹣1=0,
即(k﹣1)[k2+(1﹣a2)k+1]=0,解得k=1或k2+(1﹣a2)k+1=0.
對于k2+(1﹣a2)k+1=0,
由(1﹣a2)2﹣4=0,得a= ,此時方程的根k=1;
當1<a< 時,方程k2+(1﹣a2)k+1=0無實根;
當a> 時,方程k2+(1﹣a2)k+1=0有兩個不等實數根.
∴當a> 時,這樣的三角形有3個;當1<a≤
時這樣的三角形有1個.
【解析】由題意設出等腰直角三角形兩邊所在直線方程:lAB:y=kx+1(k>0),lAC:y=﹣ x+1,分別聯立直線方程和橢圓方程,求出|AB|,|AC|的長度,利用|AB|=|AC|得,k3﹣a2k2+a2k﹣1=0,然后分析方程根的情況得答案.
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=x2﹣2ax+5.
(1)若a>1,且函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ ,
]恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若y=f(x)=Asin(ωx+φ)(A>0,ω>0, 的部分圖象如圖所示.
(I)求函數y=f(x)的解析式;
(II)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y=g(x)的圖象;若y=g(x)圖象的一個對稱中心為 ,求θ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 ,
滿足|
|=|
=1,且|k
+
|=
|
﹣k
|(k>0),令f(k)=
. (Ⅰ)求f(k)=
(用k表示);
(Ⅱ)若f(k)≥x2﹣2tx﹣ 對任意k>0,任意t∈[﹣1,1]恒成立,求實數x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知指數函數y=g(x)滿足g(3)=8,又定義域為實數集R的函數f(x)= 是奇函數.
(1)討論函數y=f(x)的單調性;
(2)若對任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和Sn=2an﹣a1 , 且a1 , a2+1,a3成等差數列.
(1)求數列{an}的通項公式;
(2)記數列 的前n項和Tn , 求使得
成立的n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=2,a2=3,an>0,且滿足an+12﹣an=an+1+an2(n∈N*).
(1)求數列{an}的通項公式;
(2)設 ,求數列{bn}的前n項和Tn;
(3)設 (λ為正偶數,n∈N*),是否存在確定λ的值,使得對任意n∈N* , 有Cn+1>Cn恒成立,若存在,求出λ的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com