【題目】下列各組函數是同一函數的是( )
A.y=x與
B.y=x與
C.y=2lgx與y=lgx2
D. 與
科目:高中數學 來源: 題型:
【題目】設 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比為q的等比數列,a2 , a4 , a6成公差為1的等差數列,則q的最小值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M:x2+(y﹣4)2=4,點P是直線l:x﹣2y=0上的一動點,過點P作圓M的切線PA,PB,切點為A,B.
(1)當切線PA的長度為 時,求點P的坐標;
(2)若△PAM的外接圓為圓N,試問:當P在直線l上運動時,圓N是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段AB長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(﹣ ,0),B(
,0),銳角α的終邊與單位圓O交于點P.
(Ⅰ)用α的三角函數表示點P的坐標;
(Ⅱ)當
=﹣
時,求α的值;
(Ⅲ)在x軸上是否存在定點M,使得| |=
|
|恒成立?若存在,求出點M的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過點P(2,3),根據下列條件分別求出直線l的方程:
(1)l在x軸、y軸上的截距之和等于0;
(2)l與兩條坐標軸在第一象限所圍城的三角形面積為16.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中點,O是AC與BE的交點,將ABE沿BE折起到A1BE的位置,如圖2. (Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知偶函數f(x)在[0,+∞)上是增函數,且f(1)=0,則滿足f(log x)>0的x的取值范圍是( )
A.(0,+∞)
B.(0, )∪(2,+∞)
C.(0, )
D.(0, )∪(1,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a為實數,p:點M(1,1)在圓(x+a)2+(y﹣a)2=4的內部; q:x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com