【題目】已知函數.
(1)若f (x)在區間(-∞,2)上為單調遞增函數,求實數a的取值范圍;
(2)若a=0,x0<1,設直線y=g(x)為函數f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
【答案】(1);(2)見解析
【解析】試題分析:(1)求出函數的導函數,通過
對
恒成立,推出
,即可求出
的范圍;(2)利用
,化簡
,通過函數
在
處的切線方程為
,討論當
時,
;當
時,利用分析法證明;構造函數
,求出
,構造新函數
,利用公式的導數求解函數的最值,然后推出結論.
試題解析:(1)解 易知f ′(x)=-,
由已知得f ′(x)≥0對x∈(-∞,2)恒成立,
故x≤1-a對x∈(-∞,2)恒成立,∴1-a≥2,∴a≤-1.
即實數a的取值范圍為(-∞,-1].
(2)證明 a=0,則f (x)=.
函數f (x)的圖象在x=x0處的切線方程為y=g(x)=f′(x0)(x-x0)+f (x0).
令h(x)=f (x)-g(x)=f (x)-f ′(x0)(x-x0)-f (x0),x∈R,
則h′(x)=f ′(x)-f ′(x0)=-
=
.
設φ(x)=(1-x)ex0-(1-x0)ex,x∈R,
則φ′(x)=-ex0-(1-x0)ex,∵x0<1,∴φ′(x)<0,
∴φ(x)在R上單調遞減,而φ(x0)=0,
∴當x<x0時,φ(x)>0,當x>x0時,φ(x)<0,
∴當x<x0時,h′(x)>0,當x>x0時,h′(x)<0,
∴h(x)在區間(-∞,x0)上為增函數,在區間(x0,+∞)上為減函數,
∴x∈R時,h(x)≤h(x0)=0,
∴f (x)≤g(x).
科目:高中數學 來源: 題型:
【題目】若函數同時滿足:(1)對于定義域上的任意
,恒有
;(2)對于定義域上的任意
,
,當
時,恒有,
則稱函數
為“理想函數”.給出下列四個函數中:①
; ②
; ③
;④
,則被稱為“理想數”的有________(填相應的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體中,點
是對角線
上的動點(點
與
不重合),則下列結論正確的是____.
①存在點,使得平面
平面
;
②存在點,使得
平面
;
③的面積不可能等于
;
④若分別是
在平面
與平面
的正投影的面積,則存在點
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,F關于原點的對稱點為P,過F作
軸的垂線交拋物線于M,N兩點,給出下列三個結論:
①必為直角三角形;
②直線必與拋物線相切;
③的面積為
.其中正確的結論是___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程為,射線
與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A,B兩點(異于M).
(1)求證:直線AB的斜率為定值;
(2)求面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點在拋物線
外,過點
作拋物線
的兩切線,設兩切點分別為
,
,記線段
的中點為
.
(Ⅰ)求切線,
的方程;
(Ⅱ)證明:線段的中點
在拋物線
上;
(Ⅲ)設點為圓
上的點,當
取最大值時,求點
的縱坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲廠以千克/小時的速度勻速生產某種產品(生產條件要求
),每小時可獲得利潤是
元.
(1)要使生產該產品小時獲得的利潤不低于
元,求
的取值范圍;
(2)要使生產千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
為等邊三角形,且平面
平面
,
,
,
.
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為
,求該四棱錐的側面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點為
,連接
,
.利用等腰三角形的性質和矩形的性質可證得
,由此證得
平面
,故
,故
.(II) 可知
是棱錐的高,利用體積公式求得
,利用勾股定理和等腰三角形的性質求得
的值,進而求得面積.
【試題解析】
證明:(Ⅰ)取的中點為
,連接
,
,
∵為等邊三角形,∴
.
底面中,可得四邊形
為矩形,∴
,
∵,∴
平面
,
∵平面
,∴
.
又,所以
.
(Ⅱ)由面面
,
,
∴平面
,所以
為棱錐
的高,
由,知
,
,
∴.
由(Ⅰ)知,
,∴
.
.
由,可知
平面
,∴
,
因此.
在中
,
,
取的中點
,連結
,則
,
,
∴
.
所以棱錐的側面積為
.
【題型】解答題
【結束】
20
【題目】已知圓經過橢圓
:
的兩個焦點和兩個頂點,點
,
,
是橢圓
上的兩點,它們在
軸兩側,且
的平分線在
軸上,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com