【題目】已知橢圓:
的離心率為
,過左焦點
的直線與橢圓交于
,
兩點,且線段
的中點為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為
上一個動點,過點
與橢圓
只有一個公共點的直線為
,過點
與
垂直的直線為
,求證:
與
的交點在定直線上,并求出該定直線的方程.
【答案】(Ⅰ);(Ⅱ)證明見解析,
,
【解析】
(Ⅰ)設,
,根據點
,
都在橢圓上,代入橢圓方程兩式相減,根據“設而不求”的思想,結合離心率以及中點坐標公式、直線的斜率建立等式即可求解.
(Ⅱ)設,由對稱性,設
,由
,得橢圓上半部分的方程為
,從而求出直線
的方程,再由過點
與
垂直的直線為
,求出
,兩方程聯立,消去
,即可求解.
(Ⅰ)由題可知,直線
的斜率存在.
設,
,由于點
,
都在橢圓上,
所以①,
②,
①-②,化簡得③
又因為離心率為,所以
.
又因為直線過焦點
,線段
的中點為
,
所以,
,
,
代入③式,得,解得
.
再結合,解得
,
,
故所求橢圓的方程為.
(Ⅱ)證明:設,由對稱性,設
,由
,得橢圓上半部分的方程為
,
,
又過點
且與橢圓只有一個公共點,所以
,
所以:
,④
因為過點
且與
垂直,所以
:
,⑤
聯立④⑤,消去,得
,
又,所以
,從而可得
,
所以與
的交點在定直線
上.
科目:高中數學 來源: 題型:
【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,
,平面
平面
,
,
,
,
,
的余弦值為
,
,F為BE中點,G為PD中點.
(1)求證:平面ABCD;
(2)求平面BCE與平面ADE所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,
,
,
,
,
(單位:克)中,經統計得頻率分布直方圖如圖所示.
(1)經計算估計這組數據的中位數;
(2)現按分層抽樣從質量為,
的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在
內的概率.
(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為
,
,
,M是橢圓E上的一個動點,且
的面積的最大值為
.
(1)求橢圓E的標準方程,
(2)若,
,四邊形ABCD內接于橢圓E,
,記直線AD,BC的斜率分別為
,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統計,將數據按照,
,
,
,
分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.
|
(1)根據已知條件完成下面列聯表,并據此判斷是否有99%的把握認為是否為“文科方向”與性別有關?
(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數為,若每次抽取的結果是相互獨立的,求
的分布列、期望
和方差
.
參考公式:,其中
.
參考臨界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若
OMN為直角三角形,則|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:過點
,過拋物線E上一點
作兩直線PM,PN與圓C:
相切,且分別交拋物線E于M、N兩點.
(1)求拋物線E的方程,并求其焦點坐標和準線方程;
(2)若直線MN的斜率為,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com