【題目】如圖,已知、
兩個城鎮相距20公里,設
是
中點,在
的中垂線上有一高鐵站
,
的距離為10公里.為方便居民出行,在線段
上任取一點
(點
與
、
不重合)建設交通樞紐,從高鐵站鋪設快速路到
處,再鋪設快速路分別到
、
兩處.因地質條件等各種因素,其中快速路
造價為1.5百萬元/公里,快速路
造價為1百萬元/公里,快速路
造價為2百萬元/公里,設
,總造價為
(單位:百萬元).
(1)求關于
的函數關系式,并指出函數的定義域;
(2)求總造價的最小值,并求出此時的值.
科目:高中數學 來源: 題型:
【題目】在如圖的程序框圖中,若輸入,
,則輸出的
值是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]
A. 3 B. 7 C. 11 D. 33
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,
是矩形,平面
平面
,
,
,
,
為
的中點.
(1)求證:∥平面
;
(2)在線段上是否存在點
,使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
是菱形,
交BD于點
,
是邊長為2的正三角形,
分別是
的中點.
(1)求證:EF//平面SAD;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,點
在橢圓
上.
(1)求橢圓的方程;
(2)若不過原點的直線
與橢圓
相交于
兩點,與直線
相交于點
,且
是線段
的中點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2018·贛中聯考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數學家、詩人,晚年在封龍山隱居講學,數學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現有正方形方田一塊,內部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農業合作社生產了一種綠色蔬菜共噸,如果在市場上直接銷售,每噸可獲利
萬元;如果進行精加工后銷售,每噸可獲利
萬元,但需另外支付一定的加工費,總的加工
(萬元)與精加工的蔬菜量
(噸)有如下關系:
設該農業合作社將
(噸)蔬菜進行精加工后銷售,其余在市場上直接銷售,所得總利潤(扣除加工費)為
(萬元).
(1)寫出關于
的函數表達式;
(2)當精加工蔬菜多少噸時,總利潤最大,并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】矩形中,
,
為
中點,將
沿
所在直線翻折,在翻折過程中,給出下列結論:
①存在某個位置,; ②存在某個位置,
;
③存在某個位置,; ④存在某個位置,
.
其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com