精英家教網 > 高中數學 > 題目詳情

【題目】若圖,在正方體中, 分別是的中點.

(1)求證:平面平面;

(2)在棱上是存在一點,使得平面,若存在,求的值;若不存在,說明理由.

【答案】(1)證明過程見解析;(2)

【解析】試題分析:(1)連接,由正方形性質得,又由正方體中, 分別是, 的中點,易得,則, ,由線面垂直的判定定理,可得平面,進而由面面垂直的判定定理,可得平面平面;(2)設的交點是,連接 , ,由線面平行的性質定理,我們易由平面 平面,平面平面,得,再由平行線分線段成比例定理,得到線段的比.

試題解析:(1)證明:連接,則,又分別是的中點,

所以,所以,因為是正方體,

所以平面,因為平面,所以

因為,所以平面

(2)設的交點是,連接,

因為平面平面,平面平面

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,MPA上的點,為正三角形,,

1)求證:平面平面PAC;

2)若,平面BPC,求證:點M為線段PA的中點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(單位:分.百分制,均為整數)分成,,,六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

1)求分數在內的頻率,并補全這個頻率分布直方圖;

2)從頻率分布直方圖中,估計本次考試成績的眾數和平均數;

3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,有下列四個結論:

為偶函數;②的值域為;

上單調遞減;④上恰有8個零點,

其中所有正確結論的序號為(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,、、分別是、、的中點,則下列說法:

平面;②;③;④平面

其中正確的命題序號是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點,點是兩條曲線的一個交點,且軸,則該雙曲線經過一、三象限的漸近線的傾斜角所在的區間是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線與曲線恰好有兩個不同的公共點,則實數的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值

三棱錐的最大體積為;

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求函數的單調區間;

(Ⅱ)設,若對任意,且,都有,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视