精英家教網 > 高中數學 > 題目詳情

【題目】在某班進行的歌唱比賽中,共有5位選手參加,其中3位女生,2位男生.如果2位男生不能連著出場,且女生甲不能排在第一個,那么出場順序的排法種數為( )

A. 30B. 36C. 60D. 72

【答案】C

【解析】

記事件位男生連著出場,事件女生甲排在第一個,利用容斥原理可知所求出場順序的排法種數為,再利用排列組合可求出答案。

記事件位男生連著出場,即將位男生捆綁,與其他位女生形成個元素,所以,事件的排法種數為

記事件女生甲排在第一個,即將甲排在第一個,其他四個任意排列,所以,事件的排法種數為,

事件女生甲排在第一位,且位男生連著,那么只需考慮其他四個人,將位男生與其他個女生形成三個元素,所以,事件的排法種數為種,

因此,出場順序的排法種數

種,故選:C。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】f(x)是定義在(0,+∞)上的單調增函數,滿足f(xy)=f(x)+f(y),f(3)=1,當f(x)+f(x-8)≤2時,x的取值范圍是(  )

A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠擬生產甲、乙兩種適銷產品,每件銷售收入分別為3000元,2000元.甲、乙產品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2,加工一件乙設備所需工時分別為2,1.A、B兩種設備每月有效使用臺時數分別為400和500,分別用表示計劃每月生產甲,乙產品的件數.

(Ⅰ)用列出滿足生產條件的數學關系式,并畫出相應的平面區域;

(Ⅱ)問分別生產甲、乙兩種產品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《中國詩詞大會》(二季)亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現有6名男志愿者A1,A2,A3A4,A5,A6和4名女志愿者B1,B2B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。

(II)用X表示接受乙種心理暗示的女志愿者人數,求X的分布列與數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知在等腰梯形中,,,,=60°,沿,折成三棱柱

(1)若,分別為,的中點,求證:∥平面;

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四邊形為直角梯形,,,且,,點,分別在線段上,使四邊形為正方形,將四邊形沿翻折至使.

(1)若線段中點為,求翻折后形成的多面體的體積;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某區組織部為了了解全區科級干部“黨風廉政知識”的學習情況,按照分層抽樣的方法,從全區320名正科級干部和1280名副科級干部中抽取40名科級干部預測全區科級干部“黨風廉政知識”的學習情況.現將這40名科級干部分為正科級干部組和副科級干部組,利用同一份試卷分別進行預測.經過預測后,兩組各自將預測成績統計分析如下表:

分組

人數

平均成績

標準差

正科級干部組

80

6

副科級干部組

70

4

(1)求

(2)求這40名科級干部預測成績的平均分和標準差;

(3)假設該區科級干部的“黨風廉政知識”預測成績服從正態分布,用樣本平均數作為的估計值,用樣本標準差作為的估計值.利用估計值估計:該區科級干部“黨風廉政知識”預測成績小于60分的約為多少人?

附:若隨機變量服從正態分布,則;;.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,每次抽獎都是從裝有個紅球、個白球的甲箱和裝有個紅球、個白球的乙箱中,各隨機摸出一個球,在摸出的個球中,若都是紅球,則獲得一等獎;若只有個紅球,則獲得二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎次能獲獎的概率;

(2)若某顧客有次抽獎機會,記該顧客在次抽獎中獲一等獎的次數為,求的分布列和數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视