【題目】已知為坐標原點,點
在圓
:
上.
(1)求實數的值;
(2)求過圓心且與直線
平行的直線的方程;
(3)過點作互相垂直的直線
,
,
與圓
交于
兩點,
與圓
交于
兩點,求
的最大值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中.直線1的參數方程為(t為參數).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中.曲線C的極坐標方程為ρ=2cosθ.
(1)若曲線C關于直線l對稱,求a的值;
(2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,能對農作物造成嚴重傷害,每只紅鈴蟲的平均產卵數y和平均溫度x有關,現收集了以往某地的7組數據,得到下面的散點圖及一些統計量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產卵數 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據散點圖判斷,與
(其中
自然對數的底數)哪一個更適宜作為平均產卵數y關于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數據,求出y關于x的回歸方程.(計算結果精確到小數點后第三位)
(2)根據以往統計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求
的最大值,并求出相應的概率p.
②當取最大值時,記該地今后5年中,需要人工防治的次數為X,求X的數學期望和方差.
附:線性回歸方程系數公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,PA=PD=AD=2,BC=1,.
(1)求證:平面PQB⊥平面PAD;
(2)若M是棱PC上的一點,且滿足,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,直線
與橢圓
的兩交點間距離為
.
(1)求橢圓的方程;
(2)如圖,設是橢圓
上的一動點,由原點
向圓
引兩條切線,分別交橢圓
于點
,若直線
的斜率均存在,并分別記為
,求證:
為定值.
(3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為
,且經過點
.
(1)求橢圓的標準方程;
(2)設直線與橢圓
交
兩點,
是坐標原點,分別過點
作
,
的平行線,兩平行線的交點剛好在橢圓
上,判斷
是否為定值?若為定值,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】計算機誕生于20世紀中葉,是人類最偉大的技術發明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或1,分別通過電路的斷或通來實現.“字節(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數中,恰有相鄰三位數是1,其余各位數均是0的所有數相加,則計算結果用十進制表示為( )
A.378B.441C.742D.889
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com