【題目】如圖,在正三棱柱中,
,E,F分別為AB,
的中點.
(1)求證:平面ACF;
(2)求三棱錐的體積.
【答案】(1)證明見解析;(2).
【解析】
(1)取AC的中點M,連結EM,FM,然后利用三角形中位線定理,再結合正棱柱的性質,可得四邊形為平行四邊形,從而可得
,再由線面平行定理可證得結果.
(2)設O為BC的中點,則可證得平面
,所以
,然后代入值計算即可.
(1)證明:取AC的中點M,連結EM,FM,
在中,因為E、M分別為AB,AC的中點,
所以且
又F為的點,
,
所以且
,
即且
,
故四邊形為平行四邊形,所以
.
又平面ACF內,
在平面ACF外,
所以平面ACF.
(2)設O為BC的中點,因棱柱底面是正三角形,
所以有,且
,
因為正三棱柱,
所以平面ABC,
在平面ABC內,所以
,
因為,
在平面
內,
所以平面
.
于是.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的方程為
,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的極坐標方程與直線
的直角坐標方程;
(2)設直線與圓
相交于
,
兩點,求圓
在
,
處兩條切線的交點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】哈爾濱市第三中學校響應教育部門疫情期間“停課不停學”的號召,實施網絡授課,為檢驗學生上網課的效果,高三學年進行了一次網絡模擬考試.全學年共1500人,現從中抽取了100人的數學成績,繪制成頻率分布直方圖(如下圖所示).已知這100人中分數段的人數比
分數段的人數多6人.
(1)根據頻率分布直方圖,求a,b的值,并估計抽取的100名同學數學成績的中位數;
(2)現用分層抽樣的方法從分數在,
的兩組同學中隨機抽取6名同學,從這6名同學中再任選2名同學作為“網絡課堂學習優秀代表”發言,求這2名同學的分數不在同一組內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點
與直線
相切,圓心
的軌跡為曲線
,過點
做直線與曲線
交于不同兩點
,三角形
的垂心為點
.
(1)求曲線的方程;
(2)求證:點在一條定直線上,并求出這條直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
大學生是國家的未來,代表著國家可持續發展的實力,能夠促進國家綜合實力的提高.據統計,2016年至2020年我國高校畢業生人數y(單位:萬人)的數據如下表:
年份 | 2016 | 2017 | 2018 | 2019 | 2020 |
年份代號x | 16 | 17 | 18 | 19 | 20 |
高校畢業生人數y(單位:萬人) | 765 | 795 | 820 | 834 | 874 |
(1)根據上表數據,計算y與x的相關系數r,并說明y與x的線性相關性的強弱.
(已知:,則認為y與x線性相關性很強;
,則認為y與x線性相關性一般;
,則認為y與x線性相關性較弱)
(2)求y關于x的線性回歸方程,并預測2022年我國高校畢業生的人數(結果取整數).
參考公式和數據:,
,
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,點P的坐標是,曲線C的方程為
.以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,斜率為
的直線l經過點P.
(1)寫出直線l的參數方程和曲線C的直角坐標方程;
(2)若直線l和曲線C相交于兩點A,B,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓經過點
,且動圓
被
軸截得的弦長為4,記圓心
的軌跡為曲線
.
(1)求曲線的標準方程;
(2)過軸下方一點
向曲線
作切線,切點記作
、
,直線
交曲線
于點
,若直線
、
的斜率乘積為
,點
在以
為直徑的圓上,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年新型冠狀病毒肺炎蔓延全國,作為主要戰場的武漢,僅用了十余天就建成了“小湯山”模式的火神山醫院和雷神山醫院,再次體現了中國速度.隨著疫情發展,某地也需要參照“小湯山”模式建設臨時醫院,其占地是出一個正方形和四個以正方形的邊為底邊、腰長為400m的等腰三角形組成的圖形(如圖所示),為使占地面積最大,則等腰三角形的底角為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com