【題目】已知橢圓C:1(a>b>0)的左右焦點分別為F1,F2,點P是橢圓C上一點,以PF1為直徑的圓E:x2
過點F2.
(1)求橢圓C的方程;
(2)過點P且斜率大于0的直線l1與C的另一個交點為A,與直線x=4的交點為B,過點(3,)且與l1垂直的直線l2與直線x=4交于點D,求△ABD面積的最小值.
【答案】(1);(2)2
2
.
【解析】
(1)根據題意求得橢圓的焦點坐標,利用橢圓的定義求得a和b的值,即可求得橢圓方程;
(2)設直線l1的方程,代入涂鴉方程,利用韋達定理求得A的橫坐標,求得直線l2方程,求得D點坐標,利用三角形的面積公式及基本不等式即可求得△ABD面積的最小值.
(1)在圓E的方程中,令y=0,得到:x2=4,
所以F1(﹣2,0),F2(2,0),
又因為,所以P點坐標為
,
所以,則
,b=2,
因此橢圓的方程為;
(2)設直線l1:yk(x﹣2)(k>0),
所以點B的坐標為,
設A(xA,yA),D(xD,yD),將直線l1代入橢圓方程得:(1+2k2)x2+(4k﹣8k2)x+8k2﹣8
k﹣4=0,
所以xPxA,所以xA
,
直線l2的方程為y(x﹣3),所以點D坐標為
,
所以S△ABD(4﹣xA)|yB﹣yD|
=2k2
2
2
,
當且僅當2k,即k
時取等號,
綜上,△ABD面積的最小值22
.
科目:高中數學 來源: 題型:
【題目】某大學高等數學這學期分別用兩種不同的數學方式試驗甲、乙兩個大一新班(人數均為
人,入學數學平均分和優秀率都相同;勤奮程度和自覺性都一樣).現隨機抽取甲、乙兩班各
名的高等數學期末考試成績,得到莖葉圖:
(1)學校規定:成績不得低于85分的為優秀,請填寫下面的列聯表,并判斷“能否在犯錯誤率的概率不超過0.025的前提下認為成績優異與教學方式有關?”
下面臨界值表僅供參考:
(參考方式:,其中
)
(2)現從甲班高等數學成績不得低于80分的同學中隨機抽取兩名同學,求成績為86分的同學至少有一個被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】足球比賽中,一隊在本方罰球區內犯規,會被判罰點球,點球是進攻方非常有效的得分手段.研究機構對某位足球隊員的1000次點球訓練進行了統計分析,以幫助球員提高點球的命中率.如圖,將球門框內的區域分成9個區域(區域代碼為1—9,球門框外的區域記做區域0),統計球員射點球時射中10個區域次數和進球次數(即使射中球門框內,也可能被守門員撲出),得到如下的兩個頻率分布條形圖:
(其中射中率,得分率
)
(1)根據上述頻率分布條形圖,求射中球門框內時,各區域進球數的平均數(結果保留兩位小數)和中位數;
(2)以該隊員這1000次點球練習的進球頻率作為他在比賽中射點球時進球的概率,設他在三次射點球時進球數為,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年3月,國內新冠肺炎疫情得到有效控制,人們開始走出家門享受春光.某旅游景點為吸引游客,推出團體購票優惠方案如下表:
購票人數 | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
兩個旅游團隊計劃游覽該景點.若分別購票,則共需支付門票費1290元;若合并成個團隊購票,則需支付門票費990元,那么這兩個旅游團隊的人數之差為( )
A.20B.30C.35D.40
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數,
表示每天使用掃碼支付的人次(單位:十人次),統計數據如表1所示:
表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據以上數據,繪制了散點圖.
(1)根據散點圖判斷,在推廣期內,與
(
均為大于零的常數)哪一個適宜作為掃碼支付的人次
關于活動推出天數
的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(1)的判斷結果及表1中的數據,建立關于
的回歸方程,并預測活動推出第8天使用掃碼支付的人次.
(3)推廣期結束后,為更好的服務乘客,車隊隨機調查了100人次的乘車支付方式,得到如下結果:
表2
支付方式 | 現金 | 乘車卡 | 掃碼 |
人次 | 10 | 60 | 30 |
已知該線路公交車票價2元,使用現金支付的乘客無優惠,使用乘車卡支付的乘客享受8折優惠,掃碼支付的乘客隨機優惠,根據調査結果發現:使用掃碼支付的乘客中有5名乘客享受7折優惠,有10名乘客享受8折優惠,有15名乘客享受9折優惠.預計該車隊每輛車每個月有1萬人次乘車,根據所給數據,以事件發生的頻率作為相應事件發生的概率,在不考慮其他因素的條件下,按照上述收費標準,試估計該車隊一輛車一年的總收入.
參考數據:
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中.
參考公式:
對于一組數據,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓
的左頂點為
,過點
的直線與橢圓
交于
軸上方一點
,以
為邊作矩形
,其中直線
過原點
.當點
為橢圓
的上頂點時,
的面積為
,且
.
(1)求橢圓的標準方程;
(2)求矩形面積
的最大值;
(3)矩形能否為正方形?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與橢圓
交于不同的兩點
,
.
(1)若線段的中點為
,求直線
的方程;
(2)若的斜率為
,且
過橢圓
的左焦點
,
的垂直平分線與
軸交于點
,求證:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com