【題目】已知直線:
與拋物線
交于
,
兩點,記拋物線在
,
兩點處的切線
,
的交點為
.
(I)求證: ;
(II)求點的坐標(用
,
表示);
(Ⅲ)若,求△
的面積的最小值.
科目:高中數學 來源: 題型:
【題目】某綜藝節目為增強娛樂性,要求現場嘉賓與其場外好友連線互動.凡是拒絕表演節目的好友均無連線好友的機會;凡是選擇表演節目的好友均需連線未參加過此活動的3個好友參與此活動,以此下去.
(Ⅰ)假設每個人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的3個好友中不少于2個好友選擇表演節目的概率是多少?
(Ⅱ)為調查“選擇表演者”與其性別是否有關,采取隨機抽樣得到如表:
選擇表演 | 拒絕表演 | 合計 | |
男 | 50 | 10 | 60 |
女 | 10 | 10 | 20 |
合計 | 60 | 20 | 80 |
①根據表中數據,是否有99%的把握認為“表演節目”與好友的性別有關?
②將此樣本的頻率視為總體的概率,隨機調查3名男性好友,設X為3個人中選擇表演的人數,求X的分布列和期望.
附:K2= ;
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,設內角A、B、C的對邊分別為a、b、c,向量 =(cosA+
,sinA),向量
=(﹣sinA,cosA),若|
+
|=2.
(1)求角A的大;
(2)若b=4 ,且c=
a,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}則下列判斷正確的是( )
A.PQR
B.PRQ
C.QPR
D.RPQ
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 ﹣
=1(a>0,b>0)的左、右焦點分別為F1 , F2 , P為雙曲線上一點,且
=0,△F1PF2的內切圓半徑r=2a,則雙曲線的離心率e= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知直線與雙曲線
交于A,B兩點,且點A的橫坐標為4.
(1)求的值及B點坐標;
(2)結合圖形,直接寫出一次函數的函數值大于反比例函數的函數值時x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=cos2x﹣ sin2x,把y=f(x)的圖象向左平移φ(φ>0)個單位后,恰好得到函數g(x)=﹣cos2x﹣
sin2x的圖象,則φ的值可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形,
,
,
,四邊形
為正方形,平面
平面
.
(1)若點是棱
的中點,求證:
平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com