【題目】已知是拋物線
上任意一點,
,且點
為線段
的中點.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)若為點
關于原點
的對稱點,過
的直線交曲線
于
、
兩點,直線
交直線
于點
,求證:
.
科目:高中數學 來源: 題型:
【題目】已如橢圓C:的兩個焦點與其中一個頂點構成一個斜邊長為4的等腰直角三角形.
(1)求橢圓C的標準方程;
(2)設動直線l交橢圓C于P,Q兩點,直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程與直線
的極坐標方程;
(2)若射線與曲線
交于點
(不同于原點),與直線
交于點
,直線
與極軸所在直線交于點
.求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{}的首項a1=2,前n項和為
,且數列{
}是以
為公差的等差數列·
(1)求數列{}的通項公式;
(2)設,
,數列{
}的前n項和為
,
①求證:數列{}為等比數列,
②若存在整數m,n(m>n>1),使得,其中
為常數,且
-2,求
的所有可能值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】環保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,右表是對 100 輛新車模型在一個耗油單位內行車里程(單位:公里)的測試結果.
(Ⅰ)做出上述測試結果的頻率分布直方圖,并指出其中位數落在哪一組;
(Ⅱ)用分層抽樣的方法從行車里程在區間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在[40,42)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某景區欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知
,
(單位:米),要求圓M與
分別相切于點B,D,圓
與
分別相切于點C,D.
(1)若,求圓
的半徑;(結果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當
多大時,總造價最低?最低總造價是多少?(結果分別精確到0.1°和0.1千元)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com