【題目】某研究機構為了了解各年齡層對高考改革方案的關注程度,隨機選取了200名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分第一~五組區間分別為
,
,
,
,
,
).
(1)求選取的市民年齡在內的人數;
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發言,求作重點發言的市民中至少有一人的年齡在內的概率.
【答案】(1)20;(2)
【解析】
(1)選取的市民年齡在內的頻率,即可求出人數;
(2)利用分層抽樣的方法從第3組選3,記為A1,A2,A3從第4組選2人,記為B1,B2;再利用古典概型的概率計算公式即可得出.
(1)由題意可知,年齡在內的頻率為
,
故年齡在內的市民人數為
.
(2)易知,第3組的人數,第4組人數都多于20,且頻率之比為,
所以用分層抽樣的方法在第3、4兩組市民抽取5名參加座談,
所以應從第3,4組中分別抽取3人,2人.
記第3組的3名分別為,
,
,第4組的2名分別為
,
,則從5名中選取2名作重點發言的所有情況為
,
,
,
,
,
,
,
,
,
,共有10種.
其中第4組的2名,
至少有一名被選中的有:
,
,
,
,
,
,
,共有7種,所以至少有一人的年齡在
內的概率為
.
科目:高中數學 來源: 題型:
【題目】如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P, 正好形成一個正四棱柱形狀的包裝盒,若要包裝盒容積V(cm3)最大, 則EF長為____ cm .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,曲線的極坐標方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標系取相同的單位長度)的直角坐標系
中,曲線
的參數方程為:
(
為參數).
(1)求曲線的直角坐標方程與曲線
的普通方程;
(2)將曲線經過伸縮變換
后得到曲線
,若
,
分別是曲線
和曲線
上的動點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4,設圓C的半徑為1,圓心C在直線l上,若圓C上存在點M,使|MA|=2|MO|,則點M的軌跡方程是________,圓心C的橫坐標的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構通過對某企業2018年的前三個季度生產經營情況的調查,得到每月利潤(單位:萬元)與相應月份數
的部分數據如表:
3 | 6 | 9 | |
241 | 244 | 229 |
(1)根據上表數據,請從下列三個函數中選取一個恰當的函數描述與x的變化關系,并說明理由:
,
,
(2)利用(1)中選擇的函數:
①估計月利潤最大的是第幾個月,并求出該月的利潤;
②預估年底12月份的利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,平面
,
平面
,
,且
,
是
的中點.
(1)求證:;
(2)求平面與平面
所成的二面角的正弦值;
(3)在棱上是否存在一點
,使得直線
與平面
所成的角是
. 若存在,指出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調查了位家長,得到如下統計表:
(1)據此樣本,能否有的把握認為“接受程度”與家長性別有關?說明理由;
(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選
人交流發言,設
是發言人中持“贊成”態度的人數,求
的分布列及數學期望.
參考數據
參考公式
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com