【題目】已知函數.
(Ⅰ)若,求
的取值范圍;
(Ⅱ)證明:.
【答案】(Ⅰ), ………………2分
xf′(x)=xlnx+1,
題設xf′(x)≤x2+ax+1等價于lnx-x≤a,
令g(x)=lnx-x,則g’(x)=。 ………………4分
當0<x<1時,g’(x)>0;當x≥1時,g’(x)≤0,x=1是g(x)的最大值點,
g(x)≤g(1)=-1。 ………………6分
綜上,a的取值范圍是[-1,+∞)。 ………………7分
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=-1,即lnx-x+1≤0;
當0<x<1時,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;………10分
當x≥1時,f(x)=lnx+(xlnx-x+1)
=lnx+x(lnx+-1)≥0
所以(x-1)f(x)≥0
【解析】
本試題主要考查了導數在研究函數中的運用,以及利用導數求解不等式,或者參數范圍的運用。
解:(Ⅰ),
,
題設等價于
.
令,則
當,
;當
時,
,
是
的最大值點,
綜上,的取值范圍是
.
(Ⅱ)由(Ⅰ)知,即
.
當時,
;
當時,
所以
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左右焦點分別為
,
,若橢圓上一點
滿足
,且橢圓
過點
,過點
的直線
與橢圓
交于兩點
.
(1)求橢圓的方程;
(2)過點作
軸的垂線,交橢圓
于
,求證:
,
,
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解甲、乙兩個工廠生產的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位:
)記錄下來并繪制出如下的折線圖:
(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;
(2)輪胎的寬度在內,則稱這個輪胎是標準輪胎.
(i)若從甲乙提供的個輪胎中隨機選取
個,求所選的輪胎是標準輪胎的概率
;
(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列滿足:對于任意
均為數列
中的項,則稱數列
為“
數列”.
(1)若數列的前
項和
,求證:數列
為“
數列”;
(2)若公差為的等差數列
為“
數列”,求
的取值范圍;
(3)若數列為“
數列”,
,且對于任意
,均有
,求數列
的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市“招手即停”公共汽車的票價按下列規則制定:5公里以內(含5公里),票價2元;5公里以上,每增加5公里,票價增加1元(不足5公里的按5公里計算).如果某條線路的總里程為20公里,
(1)請根據題意,寫出票價與里程
之間的函數解析式,并畫出函數
的圖象.
(2)與
在(5,10]內有且僅有1個公共點,求a范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數(
為常數)滿足條件
,且方程
有兩個相等的實數根.
(1)求函數的解析式;
(2)是否存在實數使函數
的定義域和值域分別為
和
?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com