【題目】若數列滿足:對于任意
均為數列
中的項,則稱數列
為“
數列”.
(1)若數列的前
項和
,求證:數列
為“
數列”;
(2)若公差為的等差數列
為“
數列”,求
的取值范圍;
(3)若數列為“
數列”,
,且對于任意
,均有
,求數列
的通項公式.
【答案】(1)證明見解析;(2);(3)
.
【解析】分析:(1)先利用項和公式計算出an=4n-2,再利用“ 數列”證明.(2)利用“
數列”的性質求
的取值范圍.(3)先證明數列{an}為等差數列,再轉化an<a
-a<an+1,再轉化為n(2t2-t)>t2-3t+1,n(t-2t2)>2t-t2-1,分析得到公差t=
,求出數列
的通項公式.
詳解:(1)當n≥2時,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
又a1=S1=2=4×1-2,所以an=4n-2.
所以an+|an+1-an+2|=4n-2+4=4(n+1)-2為數列{an}的第n+1項,
因此數列{an}為“T 數列”.
(2)因為數列{an}是公差為d的等差數列,
所以an+|an+1-an+2|=a1+(n-1) d+|d|.
因為數列{an}為“T 數列”,
所以任意n∈N*,存在m∈N*,使得a1+(n-1) d+|d|=am,即有(m-n) d=|d|.
①若d≥0,則存在m=n+1∈N*,使得(m-n) d=|d|,
②若d<0,則m=n-1.
此時,當n=1時,m=0不為正整數,所以d<0不符合題意. 綜上,d≥0.
(3)因為an<an+1,所以an+|an+1-an+2|=an+an+2-an+1.
又因為an<an+an+2-an+1=an+2-(an+1-an)<an+2,且數列{an}為“T數列”,
所以an+an+2-an+1=an+1,即an+an+2=2an+1,
所以數列{an}為等差數列.
設數列{an}的公差為t(t>0),則有an=1+(n-1)t,
由an<a-a<an+1,得1+(n-1)t<t[2+(2n-1)t]<1+nt,
整理得n(2t2-t)>t2-3t+1, ①
n(t-2t2)>2t-t2-1. ②
若2t2-t<0,取正整數N0>,
則當n>N0時,n(2t2-t)<(2t2-t) N0<t2-3t+1,與①式對于任意n∈N*恒成立相矛盾,
因此2t2-t≥0.
同樣根據②式可得t-2t2≥0,
所以2t2-t=0.又t>0,所以t=.
經檢驗當t=時,①②兩式對于任意n∈N*恒成立,
所以數列{an}的通項公式為an=1+ (n-1)=
.
科目:高中數學 來源: 題型:
【題目】[2018·郴州期末]已知三棱錐中,
垂直平分
,垂足為
,
是面積為
的等邊三角形,
,
,
平面
,垂足為
,
為線段
的中點.
(1)證明:平面
;
(2)求與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點P到定點的距離比它到直線
的距離小2,設動點P的軌跡為曲線C.
求曲線C的方程;
若直線
與曲線C和圓
從左至右的交點依次為A,B,C,D求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的個數是( )
①命題“任意”的否定是“任意
;
②命題“若,則
”的逆否命題是真命題;
③若命題為真,命題
為真,則命題
且
為真;
④命題“若,則
”的否命題是“若
,則
”.
A. 個 B.
個 C.
個 D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】質檢部門對某工廠甲、乙兩個車間生產的12個零件質量進行檢測.甲、乙兩個車間的零件質量(單位:克)分布的莖葉圖如圖所示.零件質量不超過20克的為合格.
(1)從甲、乙兩車間分別隨機抽取2個零件,求甲車間至少一個零件合格且乙車間至少一個零件合格的概率;
(2)質檢部門從甲車間8個零件中隨機抽取4件進行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;
(3)若從甲、乙兩車間12個零件中隨機抽取2個零件,用表示乙車間的零件個數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品的保鮮時間y(單位:小時)與儲存溫度x(單位:)滿足函數關系
(k,m為常數).若該食品在0
的保鮮時間是64小時,在18
的保鮮時間是16小時,則該食品在36
的保鮮時間是( )
A.4小時B.8小時C.16小時D.32小時
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】探究函數,
上的最小值,并確定取得最小值時
的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 14 | 7 | 5.34 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | … |
(1)觀察表中值隨
值變化趨勢特點,請你直接寫出函數
,
的單調區間,并指出當
取何值時函數的最小值為多少;
(2)用單調性定義證明函數在
上的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2018·江西聯考]交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,.某同學家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續保時的費用,求X的分布列與數學期望值;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損4000元,一輛非事故車盈利8000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com