【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
科目:高中數學 來源: 題型:
【題目】為了比較注射兩種藥物后產生的皮膚皰疹的面積,選200只家兔做試驗,將這200只家兔隨機地分成兩組,毎組100只,其中一組注射藥物
,另一組注射藥物
.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同組的概率;
(2)下表1和表2分別是注射藥物和
后的試驗結果.(皰疹面積單位:
)
表1:注射藥物后皮膚皰疹面積的頻數分布表
表2:注射藥物后皮膚皰疹面積的頻數分布表
(。┩瓿上旅骖l率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數大;
(ⅱ)完成下面列聯表,并回答能否有
的把握認為“注射藥物
后的皰疹面積與注射藥物
后的皰疹面積有差異”.
表3:
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: +
=1(a>b>0)經過點(﹣1,
),其離心率e=
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設動直線l:y=kx+m與橢圓C相切,切點為T,且l與直線x=﹣4相交于點S.
試問:在x軸上是否存在一定點,使得以ST為直徑的圓恒過該定點?若存在,求出該點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知實數x,y滿足 ,若目標函數z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實數m的取值范圍是( )
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4
,PA=2,點M在線段PD上.
(1)求證:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小為45°,求BM與平面PAC所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標號為,第二次取出的小球標號為
.
(1)記事件表示“
”,求事件
的概率;
(2)在區間內任取兩個實數
,
,求“事件
恒成立”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com