【題目】已知函數f(x)=|x﹣a|﹣|x﹣2|﹣1.
(1)當a=1時,求不等式f(x)≥0的解集;
(2)當f(x)≤1,求實數a的取值范圍.
【答案】(1)[2,+∞);(2)0≤a≤4.
【解析】
(1)將函數寫成分段函數的形式,畫出函數圖像,數形結合求得不等式解集;
(2)將恒成立問題轉化為求解絕對值不等式的最值問題,再利用絕對值三角不等式求得最值即可.
(1)a=1時,
函數f(x)=|x﹣1|﹣|x﹣2|﹣1;
畫函數f(x)的圖象,如圖所示;
由圖象知,不等式f(x)≥0的解集為[2,+∞);
(2)令f(x)≤1,得f(x)=|x﹣a|﹣|x﹣2|﹣1≤1,
即|x﹣a|﹣|x﹣2|≤2(*);
設g(x)=|x﹣a|﹣|x﹣2|,
則g(x)≤|(x﹣a)﹣(x﹣2)|=|﹣a+2|=|a﹣2|,
當且僅當時
,或
時,
取得最大值.
不等式(*)可化為|a﹣2|≤2,
即﹣2≤a﹣2≤2,
解得0≤a≤4;
所以實數a的取值范圍是0≤a≤4.
科目:高中數學 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業推出一款意外險產品,每年每位職工只要交少量保費,發生意外后可一次性獲得若干賠償金,保險公司把企業的所有崗位共分為三類工種,從事這三類工種的人數分別為12000,6000,2000,由歷史數據統計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業務過程中的固定支出為每年10萬元.
(1)求保險公司在該業務所或利潤的期望值;
(2)現有如下兩個方案供企業選擇:
方案1:企業不與保險公司合作,職工不交保險,出意外企業自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業開展這項工作的固定支出為每年12萬元;
方案2:企業與保險公司合作,企業負責職工保費的70%,職工個人負責保費的30%,出險后賠償金由保險公司賠付,企業無額外專項開支.
請根據企業成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,2),動點M到點A的距離比動點M到直線y=﹣1的距離大1,動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】欲設計如圖所示的平面圖形,它由上、下兩部分組成,其中上部分是弓形(圓心為,半徑為
,
,
),下部分是矩形
.
(1)若,求該平面圖形的周長的最大值;
(2)若,試確定
的值,使得該平面圖形的面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了了解高一新生是否愿意參加軍訓,隨機調查了80名新生,得到如下2×2列聯表
愿意 | 不愿意 | 合計 | |
男 | x | 5 | M |
女 | y | z | 40 |
合計 | N | 25 | 80 |
(1)寫出表中x,y,z,M,N的值,并判斷是否有99.9%的把握認為愿意參加軍訓與性別有關;
(2)在被調查的不愿意參加軍訓的學生中,隨機抽出3人,記這3人中男生的人數為ξ,求ξ的分布列和數學期望.
參考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形所在平面垂直于直角梯形
所在平面,平面
平面
,且
,且
.
(1)設點為棱
中點,在面
內是否存在點
,使得
平面
?若存在,請證明,若不存在,說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,過點
的直線與橢圓
交于
兩點,延長
交橢圓
于點
,
的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得
為定值?若存在,求
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫科大學實習小組為研究實習地晝夜溫差與患感冒人數之間的關系,分別到當地氣象部門和某醫院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數,得到如表資料:
日期 | 1月5日 | 1月20日 | 2月5日 | 2月20日 | 3月5日 | 3月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數 | 22 | 25 | 29 | 26 | 16 | 12 |
該小組確定的研究方案是:先從這六組數據中隨機選取4組數據求線性回歸方程,再用剩余的2組數據進行檢驗.
(1)求剩余的2組數據都是20日的概率;
(2)若選取的是1月20日,2月5日,2月20日,3月5日四組數據.
①請根據這四組數據,求出關于
的線性回歸方程
(
,
用分數表示);
②若某日的晝夜溫差為,預測當日就診人數約為多少人?
附參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,其中
.若
對一切
恒成立,則①
;②
;③
既不是奇函數也不是偶函數;④
的單調遞增區間是
;⑤存在經過點
的直線與函數
的圖像不相交.以上結論正確的是________________.(寫出所有正確結論的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com