精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,曲線E的參數方程為為參數),以O為極點,x軸非負半軸為極軸建立極坐標系,直線的極坐標方程分別為,,交曲線E于點A,B交曲線E于點C,D.

1)求曲線E的普通方程及極坐標方程;

2)求的值.

【答案】1216

【解析】

1由同角的平方關系可得曲線E的普通方程;由xρcosθyρsinθ,x2+y2ρ2,代入化簡可得曲線E的極坐標方程;

2分別討論直線l1的斜率不存在,求得AB,CD的坐標,計算可得所求和;若斜率存在且不為0,設出兩直線的方程,聯立圓的方程,運用韋達定理,以及兩直線垂直的條件,結合兩點的距離公式可得所求和.

解:(1)由E的參數方程為參數),知曲線E是以為圓心,半徑為2的圓,

∴曲線E的普通方程為

,,

即曲線E極坐標方程為

2)依題意得,根據勾股定理,

,代入中,

,

設點AB,CD所對應的極徑分別為,,

,,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某廣告商租用了一塊如圖所示的半圓形封閉區域用于產品展示,該封閉區域由以為圓心的半圓及直徑圍成.在此區域內原有一個以為直徑、為圓心的半圓形展示區,該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區,其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設.(上述圖形均視作在同一平面內)

1)記四邊形的周長為,求的表達式;

2)要使改建成的展示區的面積最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】記不等式組 ,表示的平面區域為 .下面給出的四個命題: ; ; 其中真命題的是:

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求a;

(2)證明:存在唯一的極大值點,且.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求函數處的切線方程;

2)若上恒成立,求實數的取值范圍;

3)當時,求函數的極大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面

(Ⅰ)求證:平面平面;

(Ⅱ)若,二面角,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.

1)求證:平面平面

2)若,,求幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2018·湖南師大附中摸底)已知直線l經過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】猜商品的價格游戲, 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:低了! 則此商品價格所在的區間是

A. B.

C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视