已知函數f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值.
a=2,或a=-1.
解析試題分析:解:原函數的對稱軸為x=a,開口向下,①當a<0時,f(x)在[0,1]上單調遞減,∴f(x)的最大值為f(0)=1-a=2,∴a=-1<0,∴a=-1符合題意,②當0≤a≤1時,f(x)的最大值為f(a)=-a2+2a2+1-a=a2-a+1=2,∴a=或a=
∉[0,1],∴不合題意,無解,③當a>1時,f(x)在[0,1]上單調遞增,∴f(x)的最大值為f(1)=-1+2a+1-a=a=2>1,∴a=2符合題意,綜①②③得a=-1或a=2
考點:二次函數求最值問題
點評:本題考察二次函數求最值問題,注意對稱軸與區間的位置關系,當對稱軸于區間的位置關系不確定時,須分類討論,從而得到原函數的單調性,進而可以求最值
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com