精英家教網 > 高中數學 > 題目詳情
設函數,若關于的方程上恰好有兩個相異實根,則實數的取值范圍為______________.

試題分析:方程f(x)=x2+x+a可化為x-a+1-ln(1+x)2=0,由于此方程為非基本方程,故求方程的根,可以轉化為求對應函數的零點問題,利用導數法我們易構造出滿足條件的不等式組,解不等式組即可得到實數a的取值范圍.解:若f(x)=x2+x+a,即(1+x)2-ln(1+x)2=x2+x+a,即x-a+1-ln(1+x)2=0,記g(x)=x-a+1-ln(1+x)2,則g'(x)=,令g'(x)>0,得x>1,或x<-1,令g'(x)<0,得-1<x<1,∴g(x)在[0,1]上單調遞減,在[1,2]上單調遞增;,若方程f(x)=x2+x+a在x∈[0,2]上恰好有兩個相異實根,則,g(0)≥0,g(1)<0,g(2)≥0,解得2-2ln2<a≤3-2ln3,故答案為:(2-2ln2,3-2ln3]
點評:本題考查的知識點是方程的根的分布,其中利用方程的根與對應函數之間的關系,將方程f(x)=x2+x+a在x∈[0,2]上恰好有兩個相異實根,轉化為對應函數在區間∈[0,2]上恰好有兩個相異的零點是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

定義在上的函數滿足.若當時。,則當時,=________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(Ⅰ)設是定義在實數集R上的函數,滿足,且對任意實數a,b有
(Ⅱ)設函數滿足

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

若非零函數對任意實數均有,且當時, ;
(1)求證:         (2)求證:為減函數
(3)當時,解不等式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,若對任意,恒成立,則a的取值范圍是________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數是定義在上的奇函數,當時,有(其中為自然對數的底,).
(1)求函數的解析式;
(2)設,求證:當時,;
(3)試問:是否存在實數,使得當時,的最小值是3?如果存在,求出實數的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數的定義域都是R,則成立的充要條件是(   )
A.有一個,使B.有無數多個,使
C.對R中任意的x,使D.在R中不存在x,使

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數的定義域是,且滿足,如果對于0<x<y,都有,
(1)求
(2)解不等式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

利民商店經銷某種洗衣粉,年銷售量為6000包,每包進價2.80元,銷售價3.40元,全年分若干次進貨,每次進貨x包,已知每次進貨運輸勞務費62.50元,全年保管費為1.5x元。
(1)把該商店經銷洗衣粉一年的利潤y(元)表示為每次進貨量x(包)的函數,并指出函數的定義域;
(2)為了使利潤最大,每次應該進貨多少包?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视