【題目】如圖直三棱柱 中,
為邊長為2的等邊三角形,
,點
、
、
、
、
分別是邊
、
、
、
、
的中點,動點
在四邊形
內部運動,并且始終有
平面
,則動點
的軌跡長度為( )
A.
B.
C.
D.
【答案】D
【解析】因為 分別為
的中點,所以
,
,所以
平面
,
平面
,又因為
,所以平面
平面
,要使
平面
,則
平面
,所以點
的軌跡為線段
,點
的軌跡長度為
.
故本題正確答案為 .
因為 H , F , M 分別為 A ' B ' , A B , B C 的中點,連接HF,FM,HM, 所以 F M / / A C , H F / / A A ' ,所以 F M / / 平面 A C C ' A ' , H F / / 平面 A C C ' A ' ,又因為 F M ∩ H F = F ,所以平面 H F M / / 平面 A C C ' A ' ,P平面HFM, 所以MP / / 平面 A C C ' A ' ,所以點 P 的軌跡為線段 H F ,HF=4,所以選D.
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
,
.過
且斜率為
的直線
與橢圓
相交于點
,
.當
時,四邊形
恰在以
為直徑,面積為
的圓上.
(Ⅰ)求橢圓 的方程;
(Ⅱ)若 ,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數 圖象上不同兩點
,
處切線的斜率分別是
,
,規定
(
為線段
的長度)叫做曲線
在點
與
之間的“彎曲度”,給出以下命題:
①函數 圖象上兩點
與
的橫坐標分別為1和2,則
;
②存在這樣的函數,圖象上任意兩點之間的“彎曲度”為常數;
③設點 ,
是拋物線
上不同的兩點,則
;
④設曲線 (
是自然對數的底數)上不同兩點
,
,且
,若
恒成立,則實數
的取值范圍是
.
其中真命題的序號為(將所有真命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+1(a,b為實數,a≠0,x∈R).
(1)若函數f(x)的圖象過點(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)在(1)的條件下,當x∈[-1,2]時,g(x)=f(x)-kx是單調函數,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有下面四個命題
p1:若復數z滿足 ∈R,則z∈R;
p2:若復數z滿足z2∈R,則z∈R;
p3:若復數z1 , z2滿足z1z2∈R,則z1= ;
p4:若復數z∈R,則 ∈R.
其中的真命題為( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=2x2-ln x在其定義域內的一個子區間(k-1,k+1)內不是單調函數,則實數k的取值范圍是( )
A.[1,+∞)
B.[1,2)
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓 :
(
)的焦距與橢圓
:
的短軸長相等,且
與
的長軸長相等,這兩個橢圓在第一象限的交點為
,直線
經過
在
軸正半軸上的頂點
且與直線
(
為坐標原點)垂直,
與
的另一個交點為
,
與
交于
,
兩點.
(1)求 的標準方程;
(2)求 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com