【題目】某日用品按行業質量標準分成五個等級,等級系數X依次為1、2、3、4、5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
f | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件;求a、b、c的值.
(2)在(1)的條件下,將等級系數為4的3件記為x1、x2、x3,等級系數為5的2件記為y1、y2.現從這五件日用品中任取2件(假定每件日用品被取出的可能性相同),寫出所有可能的結果,并求這兩件日用品的等級系數恰好相等的概率.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
為焦點是
的拋物線上一點,
為直線
上任一點,
分別為橢圓
的上,下頂點,且
三點的連線可以構成三角形.
(1)求橢圓的方程;
(2)直線與橢圓
的另一交點分別交于點
,求證:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某自動包裝機包袋的食鹽中,隨機抽取袋作為樣本,按各袋的質量(單位:
)分成四組,
,相應的樣本頻率分布直方圖如圖所示.
(Ⅰ)估計樣本的中位數是多少?落入的頻數是多少?
(Ⅱ)現從這臺自動包裝機包袋的大批量食鹽中,隨機抽取袋,記
表示食鹽質量屬于
的袋數,依樣本估計總體的統計思想,求
的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面四個命題:
①在定義域上單調遞增;
②若銳角,
滿足
,則
;
③是定義在
上的偶函數,且在
上是增函數,若
,則
;
④函數的一個對稱中心是
;
其中真命題的序號為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】恩格爾系數是食品支出總額占個人消費支出總額的比重.恩格爾系數越小,即家庭的消費支出中用于購買食物的支出所占比例越小,更多的消費用于精神追求,標志著家庭越富裕.恩格爾系數達59%以上為貧困,50~59%為溫飽,40~50%為小康,30~40%為富裕,低于30%為最富裕.下圖給出了1980—2017年我國城鎮居民和農村居民家庭恩格爾系數的變化統計圖,對所列年份進行分析,則下列結論正確的是( )
A.農村和城鎮居民家庭消費支出呈下降趨勢
B.農村居民家庭比城鎮居民家庭用于購買食品的支出更多
C.1995年我國農村居民初步達到小康標準
D.2015年城鎮和農村居民食品支出占個人消費支出總額之比大于30.6%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數滿足
(
),且
.
(1)求的解析式;
(2)若函數在區間
上是單調函數,求實數
的取值范圍;
(3)若關于的方程
有區間
上有一個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓O:x2+y2=8內有一點P(﹣1,2),AB為過點P且傾斜角為α的弦,
(1)當α=135°時,求AB的長;
(2)當弦AB被點P平分時,寫出直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與
軸負半軸相交于點
,與
軸正半軸相交于點
.
(1)若過點的直線
被圓
截得的弦長為
,求直線
的方程;
(2)若在以為圓心半徑為
的圓上存在點
,使得
(
為坐標原點),求
的取值范圍;
(3)設是圓
上的兩個動點,點
關于原點的對稱點為
,點
關于
軸的對稱點為
,如果直線
與
軸分別交于
和
,問
是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
為焦點是
的拋物線上一點,
為直線
上任一點,
分別為橢圓
的上,下頂點,且
三點的連線可以構成三角形.
(1)求橢圓的方程;
(2)直線與橢圓
的另一交點分別交于點
,求證:直線
過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com