精英家教網 > 高中數學 > 題目詳情

如圖所示是某水產養殖廠的養殖大網箱的平面圖,四周的實線為網衣,為避免混養,
(1)若大網箱的面積為108平方米,每個小網箱的橫邊、縱邊設計為多少米時,才能使圍成的網箱中篩網的總長度最。
(2)若大網箱的面積為160平方米,網衣的造價為112元/米,篩網的造價為96元/米,且大網箱的長與寬都不超過15米,則小網箱的橫、縱邊分別為多少米時,可使總造價最低?

(1)時總長度最。2)當,時總造價最低

解析試題分析:(1)問題為:

時取等號.
(2)問題為:,且,
的最小值.
===

,所以當時總造價最低,此時.
考點:函數應用題
點評:首先將應用中的實際問題轉化為數學問題求最值,第一問利用了均值不等式求得的最值,第二問均值不等式等號成立的條件不滿足,因此結合函數圖象及單調性求得最值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某村計劃建造一個室內面積為800的矩形蔬菜溫室。在溫室內,沿左.右兩側與后側內墻各保留1寬的通道,沿前側內墻保留3 寬的空地。當矩形溫室的邊長各為多少時?蔬菜的種植面積最大。最大種植面積是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時, 求函數的單調增區間;
(Ⅱ)求函數在區間上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設,
證明:.參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

現需要制作一個容積為32的有鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價格是鐵的3倍,問底面半徑多大時桶的總造價最?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

解不等式:-3<4x-4x2≤0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某水晶制品廠去年的年產量為10萬件,每件水晶產品的銷售價格為100元,固定成本為80元.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本,預計產量每年遞增1萬件,每件水晶產品的固定成本與科技成本的投入次數的關系是.若水晶產品的銷售價格不變,第次投入后的年利潤為萬元.
( 1 )求的表達式;
( 2 )問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

據氣象中心觀察和預測:發生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即為t(h)內沙塵暴所經過的路程s(km).

(1)當t=4時,求s的值;
(2)將s隨t變化的規律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的定義域;
(2)若關于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某公司試銷一種新產品,規定試銷時銷售單價不低于成本單價500元/件,又不高于800元/件,經試銷調查,發現銷售量y(件)與銷售單價(元/件),可近似看做一次函數的關系(圖象如下圖所示).

(1)根據圖象,求一次函數的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元,
①求S關于的函數表達式;
②求該公司可獲得的最大毛利潤,并求出此時相應的銷售單價.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视