【題目】已知在直三棱柱中,
,
,
,
,
,點
在線段
上.
(Ⅰ)證明:;
(Ⅱ)求平面與平面
所成銳二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
;
(Ⅰ)若函數在
處取得極值,求實數
的值,
(Ⅱ)在(Ⅰ)的結論下,若關于的不等式
,當
時恒成立,求
的值.
(Ⅲ)令,若關于
的方程
在
內至少有兩個解,求出實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數據按照,
,…,
分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數的值(保留兩位小數);
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份
的散點圖,其擬合的線性回歸方程是
. 若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的直角頂點
在
軸上,點
,
為斜邊
的中點,且
平行于
軸.
(1)求點的軌跡方程;
(2)設點的軌跡為曲線
,直線
與
的另一個交點為
.以
為直徑的圓交
軸于
、
,記此圓的圓心為
,
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,且橢圓
過點
.過點
做兩條相互垂直的直線
、
分別與橢圓
交于
、
、
、
四點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若,
,探究:直線
是否過定點?若是,請求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓,拋物線
的頂點為
,準線的方程為
,
為拋物線
上的動點,過點
作圓
的兩條切線與
軸交于
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求△
面積
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com