精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______

【答案】

【解析】

先假設甲乙丙丁中一個人說的是對的然后再逐個去判斷其他三個人的說法最后看是否滿足題意,不滿足排除.

解:先假設甲說的對,即甲或乙申請了但申請人只有一個,

如果是甲,則乙說“丙申請了”就是錯的,丙說“甲和丁都沒申請”就是錯的,丁說“乙申請了”也是錯的,這樣三個錯的,不能滿足題意,故甲沒申請如果是乙,則乙說“丙申請了”就是錯的,丙說“甲和丁都沒申請”可以理解為申請人有可能是乙,丙,戊,但是不一定是乙,故說法不對,丁說“乙申請了”也是對的,這樣說的對的就是兩個是甲和丁滿足題意.

故答案為:乙.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,且).

(Ⅰ)求函數的單調區間;

(Ⅱ)求函數上的最大值.

【答案】(Ⅰ)的單調增區間為,單調減區間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導數來研究求得函數的單調區間.(II) 由(Ⅰ)得上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.

試題解析】

(Ⅰ)

,則.

, ,∴上單調遞增,

從而得上單調遞增,又∵,

∴當時, ,當時,

因此, 的單調增區間為,單調減區間為.

(Ⅱ)由(Ⅰ)得上單調遞減,在上單調遞增,

由此可知.

, ,

.

,

.

∵當時, ,∴上單調遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時, ;

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.

型】解答
束】
22

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知常數,函數.

(1)討論在區間上的單調性;

(2)存在兩個極值點,,的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論函數f(x)的單調性;

(2)若函數f(x)在定義域內恒有f(x)≤0,求實數a的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數同一周期中最高點的坐標為,最低點的坐標為.

1)求、、的值;

2)利用五點法作出函數在一個周期上的簡圖.(利用鉛筆直尺作圖,橫縱坐標單位長度符合比例)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

已知橢圓.過點(m,0)作圓的切線l交橢圓GA,B兩點.

I)求橢圓G的焦點坐標和離心率;

II)將表示為m的函數,并求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求的單調區間;

(Ⅱ)求在區間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調遞減區間是,單調遞增區間是.

(Ⅱ)當,即時,函數上單調遞增,

所以在區間上的最小值為.

,即時,

由(Ⅰ)知上單調遞減,在上單調遞增,

所以在區間上的最小值為.

,即時,函數上單調遞減,

所以在區間上的最小值為.

綜上,當時,的最小值為

時,的最小值為;

時,的最小值為.

型】解答
束】
19

【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.

1)求的方程;

2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在直三棱柱中,,,,,點在線段上.

(Ⅰ)證明:

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视