【題目】某地高中年級學生某次身體素質體能測試的原始成績采用百分制,已知這些學生的原始成績均分布在內,發布成績使用等級制,各等級劃分標準見下表,并規定:
三級為合格,
級為不合格
為了了解該地高中年級學生身體素質情況,從中抽取了
名學生的原始成績作為樣本進行統計,按照
分組作出頻率分布直方圖如圖
所示,樣本中分數在
分及以上的所有數據的莖葉圖如圖
所示.
(Ⅰ) 求及頻率分布直方圖中
的值;
(Ⅱ) 根據統計思想方法,以事件發生的頻率作為相應事件發生的概率,若在該地高中學生中任選人,求至少有
人成績是合格等級的概率;
(Ⅲ)上述容量為的樣本中,從
兩個等級的學生中隨機抽取了
名學生進行調研,記
為所抽取的
名學生中成績為
等級的人數,求隨機變量
的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇圓滿落幕了,相關話題在網絡上引起了網友們的高度關注,為此,21財經APP聯合UC推出“一帶一路”大數據微報告,在全國抽取的70千萬網民中(其中為高學歷)有20千萬人對此關注(其中
為高學歷).
(1)根據以上統計數據填下面列聯表;
(2)根據列聯表,用獨立性檢驗的方法分析,能否有的把握認為“一帶一路”的關注度與學歷有關系?
高學歷(千萬人) | 不是高學歷(千萬人) | 合計 | |
關注 | |||
不關注 | |||
合計 |
參考公式: 統計量的表達式是
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為
,甲投籃3次均未命中的概率為
,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設兩人命中的總次數為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發芽數,得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發芽的種子數分別為,求事件“
均小于25”的概率;
(2)請根據3月2日至3月4日的數據,求出關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
,部分對應值如下表,又知
的導函數
的圖象如下圖所示:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
則下列關于的命題:
①函數的極大值點為2;
②函數在
上是減函數;
③如果當時,
的最大值是2,那么
的最大值為4;
④當,函數
有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (
為實常數).
(1)若,
,求
的單調區間;
(2)若,且
,求函數
在
上的最小值及相應的
值;
(3)設,若存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com