【題目】已知函數f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
【答案】(1){x|x≤1或x≥4};(2)[-3,0]
【解析】試題分析:(1)解絕對值不等式首先分情況去掉絕對值不等式組,求出每個不等式組的解集,再取并集即得所求.(2)原命題等價于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范圍
試題解析:(1)當a=-3時,f(x)=
當x≤2時,由f(x)≥3得-2x+5≥3,解得x≤1;
當2<x<3時,f(x)≥3無解;
當x≥3時,由f(x)≥3得2x-5≥3,解得x≥4.
所以f(x)≥3的解集為{x|x≤1或x≥4}. 6分
(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.
當x∈[1,2]時,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a|
-2-a≤x≤2-a,
由條件得-2-a≤1且2-a≥2,解得-3≤a≤0,
故滿足條件的實數a的取值范圍為[-3,0].
科目:高中數學 來源: 題型:
【題目】某地高中年級學生某次身體素質體能測試的原始成績采用百分制,已知這些學生的原始成績均分布在內,發布成績使用等級制,各等級劃分標準見下表,并規定:
三級為合格,
級為不合格
為了了解該地高中年級學生身體素質情況,從中抽取了
名學生的原始成績作為樣本進行統計,按照
分組作出頻率分布直方圖如圖
所示,樣本中分數在
分及以上的所有數據的莖葉圖如圖
所示.
(Ⅰ) 求及頻率分布直方圖中
的值;
(Ⅱ) 根據統計思想方法,以事件發生的頻率作為相應事件發生的概率,若在該地高中學生中任選人,求至少有
人成績是合格等級的概率;
(Ⅲ)上述容量為的樣本中,從
兩個等級的學生中隨機抽取了
名學生進行調研,記
為所抽取的
名學生中成績為
等級的人數,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產和
兩種產品,按計劃每天生產
各不得少于10噸,已知生產
產品
噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產
產品1噸需要用煤4噸,電5度,勞動力10個,如果
產品每噸價值7萬元,
產品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應安排生產
兩種產品各多少才是合理的?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數,
).以原點
為極點,以
軸正半軸為極軸,與直角坐標系
取相同的長度單位,建立極坐標系.設曲線
的極坐標方程為
.
(Ⅰ)設為曲線
上任意一點,求
的取值范圍;
(Ⅱ)若直線與曲線
交于兩點
,
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的通項公式是
.
(1)判斷是否是數列
中的項;
(2)試判斷數列中的各項是否都在區間
內;
(3)試判斷在區間內是否有無窮數列
中的項?若有,是第幾項?若沒有,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com