【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進行調查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分別五個評分標準:1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意),其統計結果如下表(住宿滿意度為x,餐飲滿意度為y).
餐飲滿意度y 人數 住宿滿意度x | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 2 | 1 | 0 |
2 | 2 | 1 | 3 | 2 | 1 |
3 | 1 | 2 | 5 | 3 | 4 |
4 | 0 | 3 | 5 | 4 | 3 |
5 | 0 | 0 | 1 | 2 | 3 |
(1)求“住宿滿意度”分數的平均數;
(2)求“住宿滿意度”為3分時的5個“餐飲滿意度”人數的方差;
(3)為提高對酒店的滿意度,現從且
的會員中隨機抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.
【答案】(1).(2)
.(3)
【解析】
(1)由表格數據計算出“住宿滿意度”分數,進而可求平均數.
(2)“住宿滿意度”為3分時的5個“餐飲滿意度”人數的平均數,利用方程公式即可求解.
(3)符合條件的所有會員共6人,其中“住宿滿意度”為2的3人分別記為a,b,c“住宿滿意度”為3的3人分別記為d,e,f,從這6人中抽取2人,列舉出基本事件個數,利用古典概型的概率計算公式即可求解.
(1).
(2)當“住宿滿意度”為3分時的5個“餐飲滿意度”人數的平均數為,
其方差為.
(3)符合條件的所有會員共6人,其中“住宿滿意度”為2的3人分別記為a,b,c,“住宿滿意度”為3的3人分別記為d,e,f.
從這6人中抽取2人有如下情況,,
,
,
,
,
,
,
,
,
,
,
,
,
,
.共15種情況.
所以至少有1人的“住宿滿意度”為2的概率.
科目:高中數學 來源: 題型:
【題目】已知函數
(1)若,求
的最大值;
(2)如果函數在公共定義域D上,滿足
,那么就稱
為
的“伴隨函數”.已知函數
,
.若在區間
上,函數
是
的“伴隨函數”,求實數
的取值范圍;
(3)若,正實數
滿足
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓與拋物線
在第一象限的交點為
,橢圓
的左、右焦點分別為
,其中
也是拋物線
的焦點,且
.
(1)求橢圓的方程;
(2)過的直線
(不與
軸重合)交橢圓
于
兩點,點
為橢圓
的左頂點,直線
分別交直線
于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 在四棱錐中,
底面
,
,
,
,
,點
為棱
的中點.
(1)證明::
(2)求直線與平面
所成角的正弦值;
(3)若為棱
上一點, 滿足
, 求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一年度未發生有責任道路交通事故 | 下浮10% | |
上兩年度未發生有責任道路交通事故 | 下浮 | |
上三年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% | |
上一個年度發生有責任交通死亡事故 | 上浮30% | |
某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設三角形的邊長為不相等的整數,且最大邊長為n,這些三角形的個數為an.
(1)求數列{an}的通項公式;
(2)在1,2,…,100中任取三個不同的整數,求它們可以是一個三角形的三條邊長的概率.
附:1+22+32+…+n2;1+23+33+…+n3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,g(x)=x2﹣1.
(1)求f(x)在點(0,f(0))處的切線方程.
(2)若h(x)=f(x)+g(x)有兩個極值點x1,x2(x1<x2),求證:x1f(x1)>x2f(x2).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com