【題目】已知對任意實數x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
【答案】B
【解析】解:∵對任意實數x,有f(﹣x)=﹣f(x),g(﹣x)=g(x), ∴f(x)為奇函數;g(x)為偶函數,
∵x>0時,f′(x)>0,g′(x)>0,
∴f(x)在(0,+∞)上為增函數;g(x)在(0,+∞)上為增函數,
∴f(x)在(﹣∞,0)上為增函數;g(x)在(﹣∞,0)上為減函數,
∴f′(x)>0;g′(x)<0,
故選:B.
【考點精析】本題主要考查了利用導數研究函數的單調性的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券類穩健型產品的收益與投資額成正比,投資股票類風險型產品的收益與投資額的算術平方根成正比,已知兩類產品各投資1萬元時的收益分別為0.125萬元和0.5萬元,如圖:
(Ⅰ)分別寫出兩類產品的收益y(萬元)與投資額x(萬元)的函數關系;
(Ⅱ)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD中底面四邊形ABCD是正方形,各側面都是邊長為2的正三角形,M是棱PC的中點.建立空間直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com