精英家教網 > 高中數學 > 題目詳情

【題目】已知對任意實數x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

【答案】B
【解析】解:∵對任意實數x,有f(﹣x)=﹣f(x),g(﹣x)=g(x), ∴f(x)為奇函數;g(x)為偶函數,
∵x>0時,f′(x)>0,g′(x)>0,
∴f(x)在(0,+∞)上為增函數;g(x)在(0,+∞)上為增函數,
∴f(x)在(﹣∞,0)上為增函數;g(x)在(﹣∞,0)上為減函數,
∴f′(x)>0;g′(x)<0,
故選:B.
【考點精析】本題主要考查了利用導數研究函數的單調性的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,已知
(1)求tanA;
(2)若 ,且 ,求sinB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=ax , y=xb , y=logcx的圖象如圖所示,則a,b,c的大小關系為 . (用“<”號連接)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(UA)∪B.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券類穩健型產品的收益與投資額成正比,投資股票類風險型產品的收益與投資額的算術平方根成正比,已知兩類產品各投資1萬元時的收益分別為0.125萬元和0.5萬元,如圖:

(Ⅰ)分別寫出兩類產品的收益y(萬元)與投資額x(萬元)的函數關系;
(Ⅱ)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 有兩個零點.
(1)若函數的兩個零點是 ,求 的值;
(2)若函數的兩個零點是 ,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中底面四邊形ABCD是正方形,各側面都是邊長為2的正三角形,M是棱PC的中點.建立空間直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數 的圖象上所有點向左平行移動 個單位長度,得到函數g(x)的圖象,則g(x)圖象的一條對稱軸的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b∈R,若a2+b2﹣ab=1,則ab的取值范圍是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视