【題目】如圖,在四棱錐中,ABCD為矩形,
是以
為直角的等腰直角三角形,平面
平面ABCD.
(1)證明:平面平面PBC;
(2)為直線PC的中點,且
,求二面角
的正弦值.
【答案】(1)證明見詳解;(2).
【解析】
(1)由ABCD為矩形,得,再由面面垂直的性質可得
平面PAB,則
,結合
,由線面垂直的判定可得
平面PAD,進一步得到平面
平面PBC;
(2)取AB中點O,分別以OP,OB所在直線為x,y軸建立空間直角坐標系,分別求出平面MAD與平面MBD的一個法向量,由兩法向量所成角的余弦值可得二面角的余弦值,再由平方關系求得二面角
的正弦值.
(1)證明:為矩形,
,
平面
平面ABCD,平面
平面
,
平面PAB,則
,
又,
,
平面PAD,而
平面PBC,
平面
平面PBC,即證.
(2)取AB中點O,分別以OP,OB所在直線為x,y軸建立空間直角坐標系,
由,
是以
為直角的等腰直角三角形,
得:,
,
,
,
,
,
.
設平面MAD的一個法向量為,
由可得
,
取,得
;
設平面MBD的一個法向量為,
由可得
,
取,得
.
.
設二面角的平面角為
,
則.
二面角
的正弦值為
.
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點分別是
,橢圓
上短軸的一個端點與兩個焦點構成的三角形的面積為
;
(1)求橢圓的方程;
(2)過作垂直于
軸的直線
交橢圓
于
兩點(點
在第二象限),
是橢圓上位于直線
兩側的動點,若
,求證:直線
的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)在R上的圖象是連續不斷的一條曲線,且圖象關于原點對稱,其導函數為f'(x),當x>0時,x2f'(x)>﹣2xf(x)成立,若x∈R,e2xf(ex)﹣a2x2f(ax)>0恒成立,則a的取值范圍是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為零的等差數列中,
,且
,
,
成等比數列,
(1)求數列的通項公式;
(2)數列滿足
,數列
的前n項和為
,若不等式
對一切
恒成立,求
的取值范圍.
(3)設數列的前n項和為
,求證:對任意正整數n,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某蔬菜批發商經銷某種新鮮蔬菜(以下簡稱蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內所購進的
蔬菜沒有售完,則批發商將沒售完的
蔬菜以150元/袋的價格低價處理完畢(根據經驗,2小時內完全能夠把
蔬菜低價處理完,且當天不再購進).該蔬菜批發商根據往年的銷量,統計了100天
蔬菜在每天的前8小時內的銷售量,制成如下頻數分布條形圖.
(1)若某天該蔬菜批發商共購入6袋蔬菜,有4袋
蔬菜在前8小時內分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?
(2)以上述樣本數據作為決策的依據.
(i)若今年蔬菜上市的100天內,該蔬菜批發商堅持每天購進6袋
蔬菜,試估計該蔬菜批發商經銷
蔬菜的總盈利值;
(ii)若明年該蔬菜批發商每天購進蔬菜的袋數相同,試幫其設計明年的
蔬菜的進貨方案,使其所獲取的平均利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ2﹣6ρcosθ+5=0,曲線C2的參數方程為(t為參數).
(1)求曲線C1的直角坐標方程,并說明是什么曲線?
(2)若曲線C1與C2相交于A、B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點、點
及拋物線
.
(1)若直線過點
及拋物線
上一點
,當
最大時求直線
的方程;
(2)軸上是否存在點
,使得過點
的任一條直線與拋物線
交于點
,且點
到直線
的距離相等?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com