精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的離心率為,上頂點為A,右頂點為B.在橢圓C內,且直線與直線垂直.

1)求C的方程;

2)設過點P的直線交CMN兩點,求證:以為直徑的圓過點.

【答案】12)見解析

【解析】

(1)根據橢圓的基本量關系、直線垂直的斜率關系求解即可.

(2)先分析當直線的斜率為0時是否滿足,再分析當直線的斜率不為0時,設其方程為,聯立橢圓得出韋達定理,再計算可得即可證明.

1)因為A為橢圓的上頂點,所以,

則直線的斜率.

因為與直線垂直,所以,解得.

C的焦距為,因為C的離心率為,所以,.

,所以.

所以C的方程為.

2)由(1)知,.

當直線的斜率為0時,線段即為C的長軸,MNB重合,

則以為直徑的圓過點B.

當直線的斜率不為0時,設其方程為.

聯立,消去x

整理得,設.

,.

那么

所以.

所以,即以為直徑的圓過點B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】千百年來,我國勞動人民在生產實踐中根據云的形狀、走向、速度、厚度、顏色等的變化,總結了豐富的“看云識天氣”的經驗,并將這些經驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區天日落和夜晚天氣,得到如下列聯表:

夜晚天氣日落云里走

下雨

未下雨

出現

未出現

參考公式:.

臨界值表:

1)根據上面的列聯表判斷能否有的把握認為“當晚下雨”與“‘日落云里走’出現”有關?

2)小波同學為進一步認識其規律,對相關數據進行分析,現從上述調查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再從這天中隨機抽出天進行數據分析,求抽到的這天中僅有天出現“日落云里走”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設橢圓的上、下頂點分別為 是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,若四邊形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象如圖所示,給出四個函數:①,②,③,④,又給出四個函數的圖象,則正確的匹配方案是( ).

A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙

C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的內角、的對邊分別為、,且

(Ⅰ)求;

(Ⅱ)若,如圖,為線段上一點,且,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】采購經理指數(PMⅠ)是衡量一個國家制造業的“體檢表”,是衡量制造業在生產、新訂單、商品價格、存貨、雇員、訂單交貨新出口訂單和進口等八個方面狀況的指數,圖為20189月—20199月我國制造業的采購經理指數(單位:%).

1)求2019年前9個月我國制造業的采購經理指數的平均數(精確到0.1);

2)從201810月—20199月這12個月任意選取4個月,記采購經理指數與上個月相比有所回升的月份個數為X,求X的分布列與期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校藝術節對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,將曲線繞極點逆時針旋轉后得到曲線.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)若直線,分別相交于異于極點的,兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地一條主于道上有46盞路燈,相鄰兩盞路燈之間間隔30米,有關部門想在所有相鄰路燈間都新添一盞,假設工人每次在兩盞燈之間添新路燈是隨機,并且每次添新路燈相互獨立.新添路燈與左右相鄰路燈的間隔都不小于10米是符合要求的,記符合要求的新添路燈數量為,則

A.30B.15C.10D.5

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视