【題目】我國古代數學名著《孫子算經》中有如下問題:“今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?” 意思是:“一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?”假如回娘家當天均回夫家,若當地風俗正月初二都要回娘家,則從正月初三算起的一百天內,有女兒回娘家的天數有( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】設a>1,函數f(x)=(1+x2)ex﹣a.
(1)求f(x)的單調區間;
(2)證明f(x)在(﹣∞,+∞)上僅有一個零點;
(3)若曲線y=f(x)在點P處的切線與x軸平行,且在點M(m,n)處的切線與直線OP平行,(O是坐標原點),證明:m≤ ﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對數的底數).
(1)若f(x)是(0,+∞)上的單調遞增函數,求實數a的取值范圍;
(2)當a∈ 時,證明:函數f(x)有最小值,并求函數f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】候鳥每年都要隨季節的變化而進行大規模地遷徙,研究某種鳥類的專家發現,該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為:v=a+blog3 (其中a,b是實數).據統計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:“存在x0∈[1,+∞),使得(log23) ≥1”,則下列說法正確的是( 。
A.p是假命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命題;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命題;¬p“任意x∈(﹣∞,1),都有(log23)x<1”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
,
.過
且斜率為
的直線
與橢圓
相交于點
,
.當
時,四邊形
恰在以
為直徑,面積為
的圓上.
(Ⅰ)求橢圓 的方程;
(Ⅱ)若 ,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】編號為 的16名籃球運動員在某次訓練比賽中的得分記錄如下:
運動員編號 | ||||||||
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
運動員編號 | ||||||||
得分 | 17 | 26 | 25 | 33 | 22 | 12] | 31 | 38 |
(Ⅰ)將得分在對應區間內的人數填入相應的空格;
區間 | |||
人數 |
(Ⅱ)從得分在區間 內的運動員中隨機抽取2人,
(i)用運動員的編號列出所有可能的抽取結果;
(ii)求這2人得分之和大于50的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)的定義在(0,3)上的函數,f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( )
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+1(a,b為實數,a≠0,x∈R).
(1)若函數f(x)的圖象過點(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)在(1)的條件下,當x∈[-1,2]時,g(x)=f(x)-kx是單調函數,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com