【題目】已知f(x)的定義在(0,3)上的函數,f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( )
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)
【答案】C
【解析】解:由函數圖象可知:當f(x)<0時,0<x<1;當f(x)>0時,1<x<3;
而cosx中的x∈(0,3),當cosx>0時,x∈(0, );當cosx<0時,x∈(
,3),
則f(x)cosx<0,可化為: 或
即
或
,
解得: <x<3或0<x<1,
所以所求不等式的解集為:(0,1)∪( ,3),
故選C.
【考點精析】本題主要考查了函數的圖象和余弦函數的單調性的相關知識點,需要掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值;余弦函數的單調性:在上是增函數;在
上是減函數才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《孫子算經》中有如下問題:“今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?” 意思是:“一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?”假如回娘家當天均回夫家,若當地風俗正月初二都要回娘家,則從正月初三算起的一百天內,有女兒回娘家的天數有( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線y2=4x的焦點為F,過點F作直線l與拋物線分別交于兩點A,B,若點M滿足 =
(
+
),過M作y軸的垂線與拋物線交于點P,若|PF|=2,則M點的橫坐標為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系 中,圓
的參數方程為
(
為參數,
是大于0的常數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求圓 的極坐標方程和圓
的直角坐標方程;
(2)分別記直線 :
,
與圓
、圓
的異于原點的焦點為
,
,若圓
與圓
外切,試求實數
的值及線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 為半圓
的直徑,點
是半圓弧上的兩點,
,
.曲線
經過點
,且曲線
上任意點
滿足:
為定值.
(Ⅰ)求曲線 的方程;
(Ⅱ)設過點 的直線
與曲線
交于不同的兩點
,求
面積最大時的直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com