精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=|3x﹣1|+ax+3.
(1)若a=1,解不等式f(x)≤5;
(2)若函數f(x)有最小值,求實數a的取值范圍.

【答案】
(1)解:a=1時,f(x)=|3x﹣1|+x+3.

時,f(x)≤5可化為3x﹣1+x+3≤5,解之得 ;

時,f(x)≤5可化為﹣3x+1+x+3≤5,解之得

綜上可得,原不等式的解集為


(2)解:

函數f(x)有最小值的充要條件為 ,即﹣3≤a≤3.


【解析】(1)a=1時,f(x)=|3x﹣1|+x+3,分類討論,去掉絕對值,求得x的范圍.(2)化簡f(x)的解析式,根據一次函數的單調性與一次項系數符號的關系,求得a的范圍.
【考點精析】解答此題的關鍵在于理解函數的最值及其幾何意義的相關知識,掌握利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(小)值;利用函數單調性的判斷函數的最大(小)值,以及對絕對值不等式的解法的理解,了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】方程的曲線即為函數的圖像,對于函數,有如下結論:①上單調遞減;②函數不存在零點;③函數的值域是;④的圖像不經過第一象限,其中正確結論的個數是___________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某品牌汽車4S店,對該品牌旗下的A型、B型、C型汽車進行維修保養,每輛車一年內需要維修的人工費用為200元,汽車4S店記錄了該品牌三種類型汽車各100輛到店維修的情況,整理得下表:

車型

A型

B型

C型

頻數

20

40

40

假設該店采用分層抽樣的方法從上維修的100輛該品牌三種類型汽車中隨機抽取10輛進行問卷回訪.
(1)從參加問卷到訪的10輛汽車中隨機抽取兩輛,求這兩輛汽車來自同一類型的概率;
(2)某公司一次性購買該品牌A、B、C型汽車各一輛,記ξ表示這三輛車的一年維修人工費用總和,求ξ的分布列及數學期望(各型汽車維修的概率視為其需要維修的概率);
(3)經調查,該品牌A型汽車的價格與每月的銷售量之間有如下關系:

價格(萬元)

25

23.5

22

20.5

銷售量(輛)

30

33

36

39

已知A型汽車的購買量y與價格x符合如下線性回歸方程: = x+80,若A型汽車價格降到19萬元,請你預測月銷售量大約是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知矩形,,將沿矩形的對角線所在的直線進行翻折,在翻折過程中,則( ).

A. 時,存在某個位置,使得

B. 時,存在某個位置,使得

C. 時,存在某個位置,使得

D. 時,都不存在某個位置,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣lnx.
(1)若f(x)在x=3處取得極值,求實數a的值;
(2)若f(x)≥5﹣3x恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系中,已知曲線,將曲線上所有點橫坐標,縱坐標分別伸長為原來的倍和倍后,得到曲線

(1)試寫出曲線的參數方程;

(2)在曲線上求點,使得點到直線的距離最大,并求距離最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】供電部門對某社區位居民2017年12月份人均用電情況進行統計后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是

A. 月份人均用電量人數最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點.

(1)求圓的標準方程;

(2)已知,經過原點,且斜率為正數的直線與圓交于兩點.

(。┣笞C: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某玩具生產公司每天計劃生產衛兵、騎兵、傘兵這三種玩具共個,生產一個衛兵需分鐘,生產一個騎兵需分鐘,生產一個傘兵需分鐘,已知總生產時間不超過小時,若生產一個衛兵可獲利潤元,生產一個騎兵可獲利潤元,生產一個傘兵可獲利潤元.

(1)用每天生產的衛兵個數與騎兵個數表示每天的利潤(元);

(2)怎么分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视