【題目】將函數圖象上的各點的橫坐標縮短到原來的
,縱坐標不變,再向左平移
個單位,得到
的圖象,下列說法正確的是( )
A.點是函數
圖象的對稱中心
B.函數在
上單調遞減
C.函數的圖象與函數
的圖象相同
D.若,
是函數的零點,則
是
的整數倍
科目:高中數學 來源: 題型:
【題目】如果兩個方程的曲線經過若干次平移或對稱變換后能夠完全重合,則稱這兩個方程為“互為鏡像方程對”,給出下列四對方程:
①與
②
與
③與
④
與
則“互為鏡像方程對”的是( )
A.①②③B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C所對應的分別為a,b,c,且(a+b)(sinA﹣sinB)=(c﹣b)sinC,若a=2,則△ABC的面積的最大值是( )
A.1B.C.2D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在
處取得極值,確定
的值,并求此時曲線
在點
處的切線方程;
(2)若在
上為減函數,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在
處取得極值,確定
的值,并求此時曲線
在點
處的切線方程;
(2)若在
上為減函數,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足
.
(1)求點P的軌跡方程;
(2)設點在直線
上,且
.證明:過點P且垂直于OQ的直線
過C的左焦點F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“垛積術”是我國古代數學的重要成就之一.南宋數學家楊輝在《詳解九章算法》中記載了“方垛”的計算方法:“果子以垛,下方十四個,問計幾何?術曰:下方加一,乘下方為平積.又加半為高,以乘下方為高積.如三而一.”意思是說,將果子以方垛的形式擺放(方垛即每層均為正方形,自下而上每層每邊果子數依次遞減1個,最上層為1個),最下層每邊果子數為14個,問共有多少個果子?計算方法用算式表示為.利用“方垛”的計算方法,可計算最下層每邊果子數為14個的“三角垛”(三角垛即每層均為正三角形,自下而上每層每邊果子數依次遞減1個,最上層為1個)共有果子數為( )
A.420個B.560個C.680個D.1015個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com