【題目】設f(x)是R上的偶函數,且在[0,+∞)上單調遞增,則f(-2),f(3),f(-)的大小順序是:( )
A. f(-)>f(3)>f(-2) B. f(-
) >f(-2)>f(3)
C. f(-2)>f(3)> f(-) D. f(3)>f(-2)> f(-
)
科目:高中數學 來源: 題型:
【題目】某區工商局、消費者協會在月
號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權意識.組織方從參加活動的群眾中隨機抽取
名群眾,按他們的年齡分組:第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺記者要從抽取的群眾中選人進行采訪,求被采訪人恰好在第
組或第
組的概率;
(Ⅱ)已知第組群眾中男性有
人,組織方要從第
組中隨機抽取
名群眾組成維權志愿者服務隊,求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知=(sinx,cosx),
=(cosφ,sinφ)(|φ|<
).函數
f(x)= 且f(
-x)=f(x).
(Ⅰ)求f(x)的解析式及單調遞增區間;
(Ⅱ)將f(x)的圖象向右平移單位得g(x)的圖象,若g(x)+1≤ax+cosx在x∈[0,
]上恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數列.
(Ⅰ)求{an}的通項公式an與前n項和公式Sn;
(Ⅱ)令bn= (k<0),若{bn}是等差數列,求數列{
}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前3項和為6,前8項和為-4.
(1)求數列{an}的通項公式;
(2)設bn=(4-an)qn-1 (q≠0,n∈N*),求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數).以平面直角坐標系的原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求曲線和
公共弦的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com