精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓為橢圓的左、右焦點,為橢圓上一點,且.

1)求橢圓的標準方程;

2)設直線,過點的直線交橢圓于兩點,線段的垂直平分線分別交直線、直線、兩點,當最小時,求直線的方程.

【答案】(1) (2) .

【解析】

1)設橢圓的左焦點,由,解得,再結合橢圓的定義,求得的值,即可得到橢圓的方程;

2)可設直線,聯立方程組,求得,利用弦長公式,求得的長,進而得到,利用基本不等式,求得的值,即可求解.

1)設橢圓的左焦點,則,解得,

所以,則由橢圓定義,∴

故橢圓的標準方程為.

2)由題意直線的斜率必定不為零,于是可設直線,

聯立方程

∵直線交橢圓于,,

由韋達定理

,∴

,∴,∴

當且僅當時取等號.

此時直線的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某研究機構為了了解大學生對冰壺運動的興趣,隨機從某校學生中抽取了100人進行調查,經統計男生與女生的人數比為,男生中有20人表示對冰壺運動有興趣,女生中有15人對冰壺運動沒有興趣.

1)完成列聯表,并判斷能否有把握認為“對冰壺運動是否有興趣與性別有關”?

有興趣

沒有興趣

合計

20

15

合計

100

2)用分層抽樣的方法從樣本中對冰壺運動有興趣的學生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運動的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.

附:參考公式1.,);2.,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)設函數(),討論的極值點個數;

2)設直線為函數的圖像上一點處的切線,試探究:在區間上是否存在唯一的,使得直線與曲線相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】西安市自2017年5月啟動對“車不讓人行為”處罰以來,斑馬線前機動車搶行不文明行為得以根本改變,斑馬線前禮讓行人也成為了一張新的西安“名片”.

但作為交通重要參與者的行人,闖紅燈通行卻頻有發生,帶來了較大的交通安全隱患及機動車通暢率降低,交警部門在某十字路口根據以往的檢測數據,得到行人闖紅燈的概率約為0.4,并從穿越該路口的行人中隨機抽取了200人進行調查,對是否存在闖紅燈情況得到列聯表如下:

30歲以下

30歲以上

合計

闖紅燈

60

未闖紅燈

80

合計

200

近期,為了整頓“行人闖紅燈”這一不文明及項違法行為,交警部門在該十字路口試行了對闖紅燈行人進行經濟處罰,并從試行經濟處罰后穿越該路口行人中隨機抽取了200人進行調查,得到下表:

處罰金額(單位:元)

5

10

15

20

闖紅燈的人數

50

40

20

0

將統計數據所得頻率代替概率,完成下列問題.

(Ⅰ)將列聯表填寫完整(不需寫出填寫過程),并根據表中數據分析,在未試行對闖紅燈行人進行經濟處罰前,是否有99.9%的把握認為闖紅燈與年齡有關;

(Ⅱ)當處罰金額為10元時,行人闖紅燈的概率會比不進行處罰降低多少;

(Ⅲ)結合調查結果,談談如何治理行人闖紅燈現象.

參考公式: ,其中

參考數據:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.132

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自新型冠狀病毒疫情爆發以來,人們時刻關注疫情,特別是治愈率,治愈率累計治愈人數/累計確診人數,治愈率的高低是戰役的重要數據,由于確診和治愈人數在不斷變化,那么人們就非常關心第天的治愈率,以此與之前的治愈率比較,來推斷在這次戰役中是否有了更加有效的手段,下面是一段計算治愈率的程序框圖,請同學們選出正確的選項,分別填入①②兩處,完成程序框圖.

:第天新增確診人數;:第天新增治愈人數;:第天治愈率

A.,B.,

C.D.,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,,,,,且.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數的極值點的個數;

2)若有兩個極值點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為迎接2022年冬奧會,某市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如圖所示的莖葉圖:

1)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核為優秀的概率;

2)從圖中考核成績滿足的學生中任取3人,設表示這3人中成績滿足的人數,求的分布列和數學期望;

3)根據以往培訓數據,規定當時培訓有效.請你根據圖中數據,判斷此次冰雪培訓活動是否有效,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線與過點的直線交于兩點.

1)若,求直線的方程;

2)若,軸,垂足為,探究:以為直徑的圓是否過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视