【題目】(1)若二項式的展開式中存在常數項,則
的最小值為______;
(2)從6名志愿者中選出4人,分別參加兩項公益活動,每項活動至少1人,則不同安排方案的種數為____.(用數字作答)
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為
,
是橢圓上關于原點
對稱的兩個動點,當點
的坐標為
時,
的周長恰為
.
(1)求橢圓的方程;
(2)過點作直線
交橢圓于
兩點,且
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘數學家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個完全相同的圓錐對頂放置(兩圓錐的軸重合),已知兩個圓錐的底面半徑均為1,母線長均為3,記過圓錐軸的平面為平面
(
與兩個圓錐側面的交線為
),用平行于
的平面截圓錐,該平面與兩個圓錐側面的交線即雙曲線
的一部分,且雙曲線
的兩條漸近線分別平行于
,則雙曲線
的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數方程為(m為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
(1)求曲線C和直線的直角坐標系方程;
(2)已知直線
與曲線C相交于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線的標準方程為,其中
為坐標原點,拋物線的焦點坐標為
,
為拋物線上任意一點(原點除外),直線
過焦點
交拋物線于
點,直線
過點
交拋物線于
點,連結
并延長交拋物線于
點.
(1)若弦的長度為8,求
的面積;
(2)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在棱長為4的正方體中,點M是正方體表面上一動點,則下列說法正確的個數為( )
①若點M在平面ABCD內運動時總滿足,則點M在平面ABCD內的軌跡是圓的一部分;
②在平面ABCD內作邊長為1的小正方形EFGA,點M滿足在平面ABCD內運動,且到平面的距離等于到點F的距離,則M在平面ABCD內的軌跡是拋物線的一部分;
③已知點N是棱CD的中點,若點M在平面ABCD內運動,且平面
,則點M在平面
內的軌跡是線段;
④已知點P、Q分別是,
的中點,點M為正方體表面上一點,若MP與CQ垂直,則點M所構成的軌跡的周長為
.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com