精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左焦點為,是橢圓上關于原點對稱的兩個動點,當點的坐標為時,的周長恰為

(1)求橢圓的方程;

(2)過點作直線交橢圓于兩點,且 ,求面積的取值范圍.

【答案】(1)(2)

【解析】

1)求出AB,得到a,然后求解b,即可得到橢圓方程;2)當直線AB的斜率不存在時,求解三角形面積,設直線CD的方程為ykx+2)(k0).由消去y整理得:(1+2k2x2+8k2x+8k280,△>0,設Cx1y1),Dx2,y2),利用弦長公式求解CD,然后求解三角形面積,推出范圍即可.

(1)當點的坐標為時,,所以

由對稱性,,

所以,得

將點代入橢圓方程 中,解得,

所以橢圓方程為.

(2)當直線的斜率不存在時,,

此時

當直線的斜率存在時,設直線的方程為

消去整理得:. 顯然,

,則

因為 ,所以,

所以點到直線的距離即為點到直線的距離,

所以

,

因為,所以,

所以.綜上,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓),點的左頂點,點上一點,離心率.

1)求橢圓的方程;

2)設過點的直線的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經過點,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等腰梯形中(如圖1),,為線段的中點,為線段上的點,,現將四邊形沿折起(如圖2

1)求證:平面

2)在圖2中,若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環,調節肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.

1)若直方圖中后三組的頻數成等差數列,試估計全年級視力在5.0以上的人數;

2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數據,根據表中的數據,能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?

3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數為X,求X的分布列和數學期望.

附:

0.10

0.05

0.025

0.010

0.005

k

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上的最大值為.

(1)求a的值;

(2)求在區間上的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為(

A.B.C.D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是圓的直徑,點是圓上異于的點,直線平面,,分別是,的中點.

(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關系,并加以證明;

(Ⅱ)設,求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖,90后從事互聯網行業崗位分布條形圖,則下列結論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯網行業從業人員中90后占一半以上

B.互聯網行業中從事技術崗位的人數超過總人數的

C.互聯網行業中從事運營崗位的人數90后比80前多

D.互聯網行業中從事技術崗位的人數90后比80后多

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)若二項式的展開式中存在常數項,則的最小值為______;

2)從6名志愿者中選出4人,分別參加兩項公益活動,每項活動至少1人,則不同安排方案的種數為____.(用數字作答)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视