【題目】如圖,在半徑為的半圓形(
為圓心)鋁皮上截取一塊矩形材料
,其中
在直徑上,點
在圓周上.
(1)設,將矩形
的面積
表示成
的函數,并寫出其定義域;
(2)怎樣截取,才能使矩形材料的面積最大?并求出最大面積.
科目:高中數學 來源: 題型:
【題目】設z1 , z2是復數,則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則
=z2
C.若|z1|=|z2|,則z1 =z2
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中,
,
,
,
,
、
分別在
、
上,
,現將四邊形
沿
折起,使平面
平面
.
()若
,是否存在折疊后的線段
上存在一點
,且
,使得
平面
?若存在,求出
的值;若不存在,說明理由.
()求三棱錐
的體積的最大值,并求此時點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過4(尾/立方米)時,
的值為
(千克/年);當
時,
是
的一次函數;當
達到
(尾/立方米)時,因缺氧等原因,
的值為
(千克/年).
(1)當時,求函數
的表達式;
(2)當養殖密度為多大時,魚的年生長量(單位:千克/立方米)
可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,g(x)=lnx+
(a>0).
(1)求函數f(x)的極值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列判斷正確的是 (把正確的序號都填上).
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數,則實數b=2;
②若函數在區間
上遞增,在區間
上也遞增,則函數
必在
上遞增;
③f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數f(x)的最大值為1;
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x、y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數.Ks
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如表提供了某廠節能降耗技術改造后在生產A產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)的幾組對應數據,根據表提供的數據,求出y關于x的線性回歸方程為 =0.7x+0.35,則下列結論錯誤的是( )
x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
A.產品的生產能耗與產量呈正相關
B.t的取值必定是3.15
C.回歸直線一定過點(4,5,3,5)
D.A產品每多生產1噸,則相應的生產能耗約增加0.7噸
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com