【題目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
【答案】(1);(2)
;(3)
.
【解析】試題分析:(1)由,
是第三象限角,可得
是第四象限角,根據同角三角函數之間的關系求解即可;(2)直接根據誘導公式可得結果;(3)根據誘導公式結合(2)的結論可得結果.
試題解析:(1)∵cos(75°+α)=>0,α是第三象限角,
∴75°+α是第四象限角,
且sin(75°+α)=-=-
.
(2)cos(α-15°)= cos[90°-(75°+α)]= sin(75°+α)= -
(3)∴sin(195°-α) +cos(105o-α)
=sin[180°+(15°-α)]+cos[180o o-(75°+α)]
=-sin(15°-α) -cos(75°+α)
=-sin[90°-(75°+α)] -cos(75°+α)
=-2cos(75°+α)=.
科目:高中數學 來源: 題型:
【題目】為了預防甲型流感,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時室內每立方米空氣中的含藥量
與時間
成正比例,藥物燃燒完后滿足
,如圖所示,現測得藥物8
燃畢,此時室內空氣中每立方米的含藥量為6
,請按題中所供給的信息,解答下列各題.
(1)求關于
的函數解析式;
(2)研究表明,當空氣中每立方米的含藥量不低于且持續時間不低于
時才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在半徑為的半圓形(
為圓心)鋁皮上截取一塊矩形材料
,其中
在直徑上,點
在圓周上.
(1)設,將矩形
的面積
表示成
的函數,并寫出其定義域;
(2)怎樣截取,才能使矩形材料的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數h(x)的導函數為g(x),則有g′(x0)=0,設函數f(x)=x3﹣3x2+2,則f( )+f(
)+…+f(
)+f(
)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ +
}為等比數列,并求{an}的通項公式an;
(2)數列{bn}滿足bn=(3n﹣1) an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業常年生產一種出口產品,根據預測可知,進入21世紀以來,該產品的產量平穩增長.記2009年為第1年,且前4年中,第年與年產量
萬件之間的關系如下表所示:
若近似符合以下三種函數模型之一:
=
=
=
.
(1)找出你認為最適合的函數模型,并說明理由,然后選取其中你認為最適合的數據求出相應的解析式;
(2)因遭受某國對該產品進行反傾銷的影響,2015年的年產量比預計減少,試根據所建立的函數模型,確定2015年的年產量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aln(x+1)+ x2﹣x,其中a為實數.
(Ⅰ)討論函數f(x)的單調性;
(Ⅱ)若函數f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com