【題目】函數y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )??
C.y=2sin( ﹣
)
D.y=2sin(2x﹣ )
科目:高中數學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40m的半圓形(以O為圓心,AB為直徑)綠化區域,現計劃對其進行改建.在AB的延長線上取點D,使OD=80m,在半圓上選定一點C,改建后的綠化區域由扇形區域AOC和三角形區域COD組成,其面積為S m2. 設∠AOC=x rad.
(1)寫出S關于x的函數關系式S(x),并指出x的取值范圍;
(2)張強同學說:當∠AOC=時,改建后的綠化區域面積S最大.張強同學的說法正確嗎?若不正確,請求出改建后的綠化區域面積S最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先閱讀下列結論的證法,再解決后面的問題:已知a1 , a2∈R,a1+a2=1,求證a12+a22≥ .
【證明】構造函數f(x)=(x﹣a1)2+(x﹣a2)2
則f(x)=2x2﹣2(a1+a2)x+a12+a22
=2x2﹣2x+a12+a22
因為對一切x∈R,恒有f(x)≥0.
所以△=4﹣8(a12+a22)≤0,從而得a12+a22≥ ,
(1)若a1 , a2 , …,an∈R,a1+a2+…+an=1,請寫出上述結論的推廣式;
(2)參考上述解法,對你推廣的結論加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數的解析式;
(2)設 π<x<
π,且方程f(x)=m有兩個不同的實數根,求實數m的取值范圍和這兩個根的和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是R上的可導函數,對于任意的正實數t,都有函數g(x)=f(x+t)﹣f(x)在其定義域內為減函數,則函數y=f(x)的圖象可能為如圖中( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com