設橢圓的離心率
,
是其左右焦點,點
是直線
(其中
)上一點,且直線
的傾斜角為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓
上兩點,滿足
,求
(
為坐標原點)面積的最小值.
科目:高中數學 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的焦距為4,且與橢圓x2+
=1有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同的兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
極坐標系中橢圓C的方程為以極點為原點,極軸為
軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程;若橢圓上任一點坐標為,求
的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點
,且直線
與
的傾斜角互補,
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
四邊形ABCD的四個頂點都在拋物線上,A,C關于
軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點A坐標為,四邊形ABCD的面積為4,求直線BD的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的兩個焦點分別為
,且
,點
在橢圓上,且
的周長為6.
(I)求橢圓的方程;
(II)若點的坐標為
,不過原點
的直線與橢圓
相交于
兩點,設線段
的中點為
,點
到直線的距離為
,且
三點共線.求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,設拋物線的焦點為
,且其準線與
軸交于
,以
,
為焦點,離心率
的橢圓
與拋物線
在
軸上方的一個交點為P.
(1)當時,求橢圓
的方程;
(2)是否存在實數,使得
的三條邊的邊長是連續的自然數?若存在,求出這樣的實數
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓:
的左、右焦點分別是
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為
。
(Ⅰ)求橢圓的方程;
(Ⅱ)點是橢圓
上除長軸端點外的任一點,連接
,設
的角平分線
交
的長軸于點
,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點作斜率為
的直線
,使
與橢圓
有且只有一個公共點,設直線的
斜率分別為
。若
,試證明
為定值,并求出這個定值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com