【題目】已知直線(
).
(1)證明:直線過定點;
(2)若直線不經過第四象限,求的取值范圍;
(3)若直線軸負半軸于
,交
軸正半軸于
,△
的面積為
(
為坐標原點),求
的最小值,并求此時直線
的方程.
【答案】(1)無論k取何值,直線過定點(-2,1);(2);(3)△AOB的面積的最小值為4,此時直線l的方程為
x-y+1+1=0.
【解析】【試題分析】(1)將直線方程變形為含參數的項與 不含參數
的項,借助條件
建立方程組,即可求出定點坐標;(2)借助(1)的結論,并數形結合建立關于
的不等式組求解;(3)先求出兩點
的坐標,再建立△
的面積
關于斜率
的函數,運用基本不等式求最小值,并借助函數取得最小值時的條件求出直線的方程:
(1)證明:由已知得: k(x+2)+(1-y)=0,
令 x+2=0 且 1-y=0,得: x=-2, y=1
∴無論k取何值,直線過定點(-2,1)
(2)直線方程可化為,
當時,要使直線不經過第四象限,則
,解得
;
當時,直線為
,符合題意.
綜上:的取值范圍是
。
(3)令y=0得:A點坐標為,令x=0得:B點坐標為(0,2k+1)(k>0),
∴S△AOB=|2k+1|=
(2k+1)=
≥
(4+4)=4
當且僅當4k=,即k=
時取等號.
即△AOB的面積的最小值為4,此時直線l的方程為x-y+1+1=0,
即 x-2y+4=0.
科目:高中數學 來源: 題型:
【題目】已知函數的導函數為
,
.
(1)當時,求函數
的單調區間;
(2)若對滿足的一切
的值,都有
,求實數
的取值范圍;
(3)若對一切
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(1)當時,證明:函數
不是奇函數;
(2)判斷函數的單調性,并利用函數單調性的定義給出證明;
(3)若是奇函數,且
在
時恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,點
也為拋物線
的焦點,過點
的直線
交拋物線
于
兩點.
(Ⅰ)若點滿足
,求直線
的方程;
(Ⅱ)為直線
上任意一點,過點
作
的垂線交橢圓
于
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點
為平面上的動點,且過點
作
的垂線,垂足為
,滿足:
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)在軌跡上求一點
,使得
到直線
的距離最短,并求出最短距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C的標準方程是
(Ⅰ)求它的焦點坐標和準線方程;
(Ⅱ)直線過已知拋物線C的焦點且傾斜角為45°,且與拋物線的交點為A、B,求線段AB的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一批產品需要原材料500噸,每噸原材料可創造利潤12萬元,該公司通過設備升級,生產這批
產品所需原材料減少了
噸,且每噸原材料創造的利潤提高
;若將少用的
噸原材料全部用于生產公司新開發的
產品,每噸原材料創造的利潤為
萬元
.
(1)若設備升級后生產這批產品的利潤不低于原來生產該批
產品的利潤,求
的取值范圍;
(2)若生產這批產品的利潤始終不高于設備升級后生產這批
產品的利潤,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線
(1)化的方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點P對應的參數為
,Q為
上的動點,求PQ的中點M到直線
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com