【題目】已知橢圓的左、右焦點分別為
,點
也為拋物線
的焦點,過點
的直線
交拋物線
于
兩點.
(Ⅰ)若點滿足
,求直線
的方程;
(Ⅱ)為直線
上任意一點,過點
作
的垂線交橢圓
于
兩點,求
的最小值.
【答案】(Ⅰ)或
(Ⅱ)
【解析】
試題分析:(Ⅰ)由拋物線C2:y2=8x得F2(2,0),當直線l斜率不存在,即l:x=2時,滿足題意.當直線l斜率存在,設l:y=k(x-2)(k≠0),A,B
,與拋物線方程聯立可得
,利用根與系數的關系、中點坐標公式可得AB的中點
,由|PA|=|PB|,可得PG⊥l,kPGk=-1,解得k即可得出;(Ⅱ)F2(2,0),可得橢圓C1的方程,設T點的坐標為(-3,m),則直線TF1的斜率kTF1=-m.當m≠0時,直線MN的斜率kMN=
,直線MN的方程是x=my-2,
當m=0時,上述方程.設M ,N
,與橢圓的方程聯立,利用根與系數的關系、兩點之間的距離公式及其基本不等式的性質即可得出
試題解析:(Ⅰ)由拋物線得方程, ………
分,
當直線斜率不存在,即
時,滿足題意. ………
分,
當直線斜率存在,設
,
聯立 ……
分,
設的中點為
,則
,
,
,
,直線
:
或
………
分,
(Ⅱ)∵,設T點的坐標為
,………
分,
則,∴可設直線
.
,則
,
得,………
分
,
,
當且僅當,即
時,
取得最小值
.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線:
(
為參數),曲線
:
(
為參數).
(1)設與
相交于
,
兩點,求
;
(2)若把曲線上各點的橫坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在
上為增函數,且
,
為常數,
.
(1)求的值;(2)若
在
上為單調函數,求
的取值范圍;
(3)設,若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,D,E分別為AC,AB的中點,點F為線段CD上的一點.將△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如圖2.
(1)求證:DE∥平面A1CB;
(2)求證:A1F⊥BE;
(3)線段A1B上是否存在點Q,使A1C⊥平面DEQ?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱錐F—ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,離心率為
,
分別為左右焦點.
(1)求橢圓的標準方程;
(2)若上存在兩個點
,橢圓上有兩個點
滿足
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線(
).
(1)證明:直線過定點;
(2)若直線不經過第四象限,求的取值范圍;
(3)若直線軸負半軸于
,交
軸正半軸于
,△
的面積為
(
為坐標原點),求
的最小值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》規定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結果如表:
酒精含量(mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70)[] | [70,80) | [80,90) | [90,100] |
人數 | 3 | 4 | 1 | 4 | 2 | 3 | 2 | 1 |
(Ⅰ)繪制出檢測數據的頻率分布直方圖(在圖中用實線畫出矩形框即可);
(Ⅱ)求檢測數據中醉酒駕駛的頻率,并估計檢測數據中酒精含量的眾數、平均數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com