【題目】已知函數的導函數為
,
.
(1)當時,求函數
的單調區間;
(2)若對滿足的一切
的值,都有
,求實數
的取值范圍;
(3)若對一切
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知在數列{an}中,Sn為其前n項和,若an>0,且4Sn=an2+2an+1(n∈N*),數列{bn}為等比數列,公比q>1,b1=a1,且2b2,b4,3b3成等差數列.
(1)求{an}與{bn}的通項公式;
(2)令cn= ,若{cn}的前項和為Tn,求證:Tn<6.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.現甲、乙兩警員同時從A地出發勻速前往B地,經過t小時,他們之間的距離為(單位:千米).甲的路線是AB,速度是5千米/小時,乙的路線是ACB,速度是8千米/小時,乙到達B地后原地等待,設
時,乙到達C地.
(1)求與
的值;
(2)已知警員的對講機的有效通話距離是3千米.當時,求
的表達式,并判斷
在
上的最大值是否超過3?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線:
(
為參數),曲線
:
(
為參數).
(1)設與
相交于
,
兩點,求
;
(2)若把曲線上各點的橫坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是數列
的前n項和,滿足
,正項等比數列
的前n項和為
,且滿足
.
(Ⅰ) 求數列{an}和{bn}的通項公式; (Ⅱ) 記,求數列{cn}的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 是邊長為3的正方形,
平面
,
平面
,
.
(1)證明:平面平面
;
(2)在上是否存在一點
,使平面
將幾何體
分成上下兩部分的體積比為
?若存在,求出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在
上為增函數,且
,
為常數,
.
(1)求的值;(2)若
在
上為單調函數,求
的取值范圍;
(3)設,若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線(
).
(1)證明:直線過定點;
(2)若直線不經過第四象限,求的取值范圍;
(3)若直線軸負半軸于
,交
軸正半軸于
,△
的面積為
(
為坐標原點),求
的最小值,并求此時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com