精英家教網 > 高中數學 > 題目詳情

【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點在平面上的射影在直線上,且.

1)求證:平面

(2)求二面角的余弦值.

【答案】(1)詳見解析(2)

【解析】

試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發給予證明,而當線線平行比較難找時,可以先證面面平行,再轉化為線面平行:本題有兩組相交直線互相平行,,先得線面平行,平面平面,再得面面平行,平面平面,最后得線面平行平面(2)利用空間直角坐標系求二面角余弦值,先根據題意建立空間直角坐標系,設立各點坐標,利用方程組解得各面法向量,根據向量數量積求法向量夾角,最后根據二面角與向量夾角之間關系得結論

試題解析:(1)證明:,,又平面,

平面

平面

同理又平面

,平面平面

平面,平面

(2)如圖,過,過平面,

分別以軸建立空間直角坐標系.

,

.

設平面的法向量為

,令,解得.

平面平面,平面的法向量為

設二面角的大小為,顯然為鈍角,

又平面的一個法向量為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內的圖象時,列表并填入了部分數據,如表:

(1)請將上表數據補充完整,并直接寫出函數f(x)的解析式.

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是坐標原點,若橢圓的離心率為,右頂點為,上頂點為的面積為

1)求橢圓的標準方程;

2)已知點為橢圓上兩動點,若有,證明:直線恒過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

討論的單調區間;

若直線的圖象恒在函數圖像的上方,求的取值范圍;

若存在,,使得,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數上是減函數,求實數的取值范圍;

(2)令,是否存在實數,當是自然常數)時,函數的最小值是3,若存在,求出的值;若不存在,說明理由.

(3)當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的導函數為,.

(1)當時,求函數的單調區間;

(2)若對滿足的一切的值,都有,求實數的取值范圍;

(3)若對一切恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在直三棱柱中, , ,點的中點.

(1)求證: 平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年1月2日凌晨某公司公布的元旦全天交易數據顯示,天貓元旦當天全天的成交金額為315.5億元.為了了解網購者一次性購物情況,某統計部門隨機抽查了1月1日100名網購者的網購情況,得到如下數據統計表,已知網購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網購者進一步調查顯示:購物金額在2000元以上的購物者中網齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網齡不足3年的有20人,請填寫下面的列聯表,并據

此判斷能否在犯錯誤的概率不超過0.025的前提下認為網購金額超過2000元與網齡在3年以上有關?

參考數據:

參考公式:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點為平面上的動點,且過點的垂線,垂足為,滿足:

()求動點的軌跡的方程;

()在軌跡上求一點,使得到直線的距離最短,并求出最短距離.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视