【題目】函數f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是( )
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]
科目:高中數學 來源: 題型:
【題目】設f(x)=cos2x﹣ sin2x,把y=f(x)的圖象向左平移φ(φ>0)個單位后,恰好得到函數g(x)=﹣cos2x﹣
sin2x的圖象,則φ的值可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a>0),
(1)當a=1,b=2,若|f(x)|﹣2=0有且只有兩個不同的實根,求實數c的取值范圍;
(2)設方程f(x)=x的兩個實根為x1 , x2 , 且滿足0<t<x1 , x2﹣x1> ,試判斷f(t)與x1的大小,并給出理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).記Sn=a1+a2+…+an . Tn= +
+…+
.求證:當n∈N*時
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱椎P﹣ABC中,PA=PB=PC=AC=4,AB=BC=2 .
(1)求證:平面ABC⊥平面APC.
(2)若動點M在底面三角形ABC內(包括邊界)運動,使二面角M﹣PA﹣C的余弦值為 ,求此時∠MAB的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形,
,
,
,四邊形
為正方形,平面
平面
.
(1)若點是棱
的中點,求證:
平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地環保部門跟蹤調查一種有害昆蟲的數量.根據調查數據,該昆蟲的數量(萬只)與時間
(年)(其中
)的關系為
.為有效控制有害昆蟲數量、保護生態環境,環保部門通過實時監控比值
(其中
為常數,且
)來進行生態環境分析.
(1)當時,求比值
取最小值時
的值;
(2)經過調查,環保部門發現:當比值不超過
時不需要進行環境防護.為確保恰好3年不需要進行保護,求實數
的取值范圍.(
為自然對數的底,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(Ⅱ)記甲組學生的成績分別為x1 , x2 , …,x12 , 執行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學生小張、小李同時回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為
,兩人回答每道題正確與否相互獨立.記小張答對題的道數為a,小李答對題的道數為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數學期望.
附:K2= ;其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com