【題目】如圖,矩形ABCD中,,
,E,F,G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,
,
,
是線段CF的四等分點,分別以HF,EG為x,y軸建立直角坐標系,設ER與
ER與
分別交于
,
,ES與
ES與
交于
,
,ET與
交于點N,則下列關于點
,
,
,
,N與兩個橢圓:
:
,
:
的位置關系敘述正確的是( )
A.三點,
,Nspan>在
,點
在
上B.
,
不在
上,
,N在
上
C.點在
上,點
,
,
均不在
上D.
,
在
上,
,
均不在
上
科目:高中數學 來源: 題型:
【題目】已知數列的各項均為正數,前
項和為
,首項為2.若
對任意的正整數
,
恒成立.
(1)求,
,
;
(2)求證:是等比數列;
(3)設數列滿足
,若數列
,
,…,
(
,
)為等差數列,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若四面體的三組對棱分別相等,即
,
,
,則________.(寫出所有正確結論的編號)
①四面體每個面的面積相等
②四面體每組對棱相互垂直
③連接四面體每組對棱中點的線段相互垂直平分
④從四面體每個頂點出發的三條棱的長都可以作為一個三角形的三邊長
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,四棱錐中,
底面
,面
是直角梯形,
為側棱
上一點.該四棱錐的俯視圖和側(左)視圖如圖2所示.
(1)證明:平面
;
(2)線段上是否存在點
,使
與
所成角的余弦值為
?若存在,找到所有符合要求的點
,并求
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
、
,過
的直線
與橢圓
相交于
、
兩點.
(1)求 的周長;
(2)設點為橢圓
的上頂點,點
在第一象限,點
在線段
上.若
,求點
的橫坐標;
(3)設直線不平行于坐標軸,點
為點
關于
軸的對稱點,直線
與
軸交于點
.求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為為參數
,以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為
.
求曲線C的直角坐標方程與直線l的極坐標方程;
Ⅱ
若直線
與曲線C交于點
不同于原點
,與直線l交于點B,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線M:的焦點為F,過焦點F的直線l(與x軸不垂直)交拋物線M于點A,B,A關于x軸的對稱點為
.
(1)求證:直線過定點,并求出這個定點;
(2)若的垂直平分線交拋物線于C,D,四邊形
外接圓圓心N的橫坐標為19,求直線AB和圓N的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
某高校設計了一個實驗學科的實驗考查方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立完成全部實驗操作。規定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。
(Ⅰ)分別寫出甲、乙兩考生正確完成題數的概率分布列,并計算數學期望;
(Ⅱ)試從兩位考生正確完成題數的數學期望及至少正確完成2題的概率分析比較兩位考生的實驗操作能力.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com